Radio-Electronics

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

CLOSED-CLIRCUIT TV Security On The Job

BUILD AL SOLID STATE Intra-Red Detector

HERE COMES THE FEMTOWATT If's New To FM Tuner Specs

PROTECT YOUR HOME Built An Electronic Alarm syssem

gugielmo mabroin rooth Anniversiny

clioum crivsiat cial

 IN AK KIT S sebpantes
PLUS

TV Sence dinite lack onis spliane efifio

PTS ELECTBOUNCS

Precision Tuner Service PIS nis now raiante nar vou

995VHF-UHF-FM 16^{95}. UV-COMB.

PTS will repair any tuner-no matter how old cr new-black \& white or color-transistor or tubes-varactor 0^{-}detent UHF - 8 hour service is a must!

PARTS
PTS is the only tuner service to publish an 80-page Tuner Replacement Guide and Parts catalog-and sell you any or all parts (3rd edition of top information available for one dollar)

12^{50}.....IF-SUBCHASSIS

PTS was 1 st to repair IF modules and make a success of it. We do it right the 1 st time. (All prices are dealer net! Major parts, tubes and transistors charged at net cost)

and Still trying harder!

Best. Best. Best.

Permit us this momentary bit of self-indulgence, because our intentions are pure: to assist you in choosing the best phono cartridge for your hi-fi system, within the practical limitations of your audio budget. To begin, if you feel uncomfortable with anything less than state-of-the-art playback perfection, we heartily recommend the Shure V-15 Type III, a cartridge of such flawless performance it is the perfect companion to the finest turntables and tone arms available today - and those coming tomorrow. At a more moderate level of performance and price, we suggest the Shure M91ED, a superb performer second in trackability only to the Type III. Finally, for optimum performance under a budget austerity program, the yeoman Shure M44E is for you. All in all, these are three great ways to enjoy music with the kind of system you have decided is best for you.

Shure Brothers Inc.
222 Hartrey Ave., Evanston, III. 60204
In Canada: A. C. Simmonds \& Sons Ltd

Here's one book you can really tell by its cover.

We don't have to waste time telling you about our new integrated circuit replacement guide.
Just read the index on the cover.
If that doesn't convince you, nothing will. Available from your local Sylvania distributor.
Sylvania Electronic Components, 100 First Ave., Waltham, Mass. 02154

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

SOLID-STATE ELECTRONICS	53 58	Liquid Crystal Digital Clock In A Kit $\$ 89.95$ kit you turn into a CMOS IC battery-powered clock with a liquid-crystal display. Electronic Casino Part II: Here are the final two games that complete your private gaming casino. by Waller Scott
BUILD ONE OF THESE	33 56	Electronic Security System Protects Your Home Easy-to-make system safeguards against unwanted intruders. by Michael S. Robbins IR Finder For Your Pocket Infrared detector you can hold in the palm of your hand. by Forrest M. Mims
$\begin{array}{r} \text { HI-FI } \\ \text { AUDIO } \\ \text { STEREO } \end{array}$	50	Here Comes The Femtowatt A preview of a new proposed FM tuner specification. by Len Feldman
100TH ANNIVERSARY	46	Guglielmo Marconi 100 years ago, this famous radio pioneer was born. Here's a brief look at his remarkable contributions. by Stanley Leinwoll

GENERAL	4	Looking Ahead Tomorrow's news today by David Lachenbruch
	$\mathbf{2 2}$	Appliance Clinic Nicad batteries. by Jack Darr
TELESONICS	All About Transformers How they work, what they do, and how they are used. by Farl Jacob Waters	
TELEVISION	16	Equipment Report TeleMatic KC-270 Crys-Mate

25 Service Clinic
Focus facts and fallacies. by Jack Darr

26 Reader Questions
R-E's Service Editor solves reader problems.

36 CCTV On The Job
Case history applications of closed-circuit TV in bank security, police work, and department store protection.
by Robert S. Haimes

64 Step-By-Step Troubleshooting Charts
Color TV and your scope. by Stan Prentiss

DEPARTMENTS	102	Advertising Index	79	New Literature
	24	Letters	76	New Products
	6	New \& Timely	82	Next Month
		105	Reader Service Card	

BUILD THIS IR FINDER to study the practical applications of infra-red light. The entire unit can be built into a palm size flashlight.

Hugo Gernsback (1884-1967)
founder
M. Harvey Gernsback, editor-in-chief and publisher
Larry Steckler, CET, editor
Robert F. Scott, W2PWG. CET, technical editor Jack Darr, CET, service editor

1. Queen, editorial associate

Leonard Feldman, contributing high-fidelity editor
David Lachenbruch, contributing editor Barbara Schwartz, editorial assistant
Vincent P. Cicenia, production manager
Sarah Martin, production assistant
Harriet I. Matysko, circulation director
Arline R. Fishman, advertising coordinator

Cover photograph by Walter Herstatt
Cover design by Louis E. Rubsamen

Radio-Electronics is indexed in Applied Science \& Technology Index $*:$ and Readers Guide to Periodical Literature.

Radio-Electronics, April 1974. Vol. 45. No 4. Published monthly by Gernsback Publications, Inc., 200 Park Av enue South. New York City 10003 Second-class postage paid at New York, N.Y and additional mailing office One-year Subscription rate: US A.U.S possessions and Canada. \$7. Pan-American countries. \$8. Other countries $\$ 8.50$. Sirgle copies 60c. 1974 by Gernsback Publications. Inc. All rights reserved. Printed in US A
Subscription Service: Mail ail subscription orders, changes, correspondence and Postmaster Notices of undelivered copies (Form 3579) to Radio-Electronics Subscription Service, Boulder, Colo. 80302.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We dis claim any responsibility for the loss or damage of man uscripts and/or artwork or photographs while in our
possession or otherwise.

[^0]
looking ahead

Domestic satellite

The United States first "domestic satellite" communications system is now in operation - but the satellite itself is Can adian. RCA has inaugurated the "Satcom" system, linking the East and West Coasts and Alaska. For its initial phase, RCA has leased two rf channels on Canada's Anik-2 domestic satellite sending and receiving via its own earth stations in New York. San Franciscc. Juneau and Anchorage. Although some network television programs have already been relayed to Alaska via the satellite, it's expected that the initial service will be primarily devoted to public telephone communications data links and private-line telephone. Some time in 1976, the Satcom system is scheduled to have three of its own satellites and addition al earth stations near Atlanta. Chicago, Dallas, Denver, Los Angeles, Seattle and Washington, as well as Valdez, Prudhoe Biay, Nome and Bethel. Alaska.

By leasing channels from Canada's satellite, RCA got the jump on Western Union, which plans to inaugurate domestic service using its own satellites this summer. Both systems, as well as others planned for the future, will offer all types of electronic communications services, including network television relay, as an alternative to current land-line links.

Video outlook dim

That gee-whiz product of the future, the low-cost home videoplayer, now seems likely to remain a product of the future at least throuch the end of this year, despite numerous false starts in the last few years. The energy crisis, parts and materials shortages, unexpected technical bugs and
marketing timıdity appear to have pushed the mass-market videoplayer into next year at least. This wonder product has been "imminent" for at least the last five years, and, except for its appeal to those consumers well heeled enough to pay $\$ 1,500$ or $\$ 2.000$, the video recorder and player will probably continue to be a commercial-indus-trial-education market item into 1975.

The only 1972-1973 venture into the consumer market, Cartridge Television Inc.'s home videotape system, bit the dust last year in a bankruptcy proceeding. RCA's MagTape SelectaVision home VTR deck, originally scheduled for introduction in late 1973, has undergone a long series of delays as a result of supply problems, design modifications and other vexations, and is now tentatively scheduled for "test marketing" next December, with no firm decision as to whether it actually will be offered to the mass consumer market at all.

The videoplayer which seemed most likely to suc ceed in 1974 - the TeD videodisc system developed by Germany's Telefunken and Britain's Decca - now is also back on the drawing board Although mass marketing in Germany had been announced last fall and deliveries to consumers had been scheduled to start at the first of this year, Telefunken was forced to stop production after mechanical problems were discovered. Telefunken is still talking about getting its system on the market around midyear, but there is strong evidence that it may decide to hold off for the rest of the year until a strong library of prerecorded videodiscs can be built up.

Japan. which usually is in the forefront of consumer electronics developments, has been playing the "home video
revolution" real cool. Sanyo Corporation, the TeD hardware licensee for Japan, still maintains its marketing target is "Iate 1974" - but concedes that slippage (or a complete review of the whole situation) is possible. Other Japanese manufacturers - Japan Victor, Sony. Panasonic - are already offering home color VTR's" through department stores in their home market. These, however are actually standard closed-circuit videocassette machines in consumer dress. and they're priced at around $\$ 1,400$ for a deck attachment, or \$2,200 to $\$ 2,500$ for a console version including a color set - far above any mass-market price. And these recorders can't be expected to come down in price in their present form.

Materials and power shortages have sharply reduced the incentive for manufacturers to offer innovative products on the consumer market. "Look at it this way," said one manufacturer. "We know there's a market for color TV sets and stereo. A home videodisc or videotape system is an unknown quantity. OK, so we've a limited quantity of plastic or semiconductors or something else that could be used in either product. We're going to play it safe and put it in the product we know we can sell

TV set safety

How safe are television receivers? The question is under investigation a gain this time by the government's new Consumer Product Safety Commission. A preliminary report from the Commission's field offices, involving 42 counties, unearthed 916 fires in the 12 months ended Aug. 31. 1973 which a ppear to have been caused by TV sets. Another report by the Commission, based on consumer complaints, hospital records
and newspaper clippings, analyzes accidents involving 51 TV sets, almost all of them color, in which it is stated that 23 people were killed and 51 injured. Most of the incidents were the result of fires, but five involved electric shocks, one an "explosion.

In other data released by CPSC, the National Electronic Injury Surveillance System is quoted as listing 857 injuries related to television in the year ended last August 31. Of these, six involved burns, five electric shocks; the remainder seemed to be the result of falling TV sets, injuries received by consumers trying to lift heavy sets, and so forth

Philco name sold

One of the oldest brand names in consumer electronics - Philco - is being sold for the second time. Founded in 1892 as a producer of batteries, Philco made its first radio in 1928 and was sold to Ford Motor Co. in 1961. At press time. Ford had agreed to sell U.S. rights to the Philco name, as well as its American sales organization, to White Consolidated Industries of Cleveland. The current Philco-Ford organization plans to continue domestic manufacture and sale of car radios and other automotive products, and will sell color TV sets to White, which will market them. White is scheduled to take over the PhilcoFord plants in Taiwan (Formosa) and in Watsonto wn, Pa. White manufactures machine tools as well as Kelvinator, Gibson and Hamilton home appliances. Philco's Latin American subsidiaries will continue to be owned and operated by Ford, as will its aerospace and communications operations.

by DAVID LACHENBRUCH

CONTRIBUTING EDITOR

Take a leaf from the Mallory Money Tree and save on famous Mallobins.

Our Mallobin benchtop organizers are worth many times their modest cost in keeping electronic components neatly sorted, labeled, protected and ready for use. Now, you can save on buying them, too. For
instance, this PTC semiconductor Mallobin organizer can be purchased at a special discount at your Mallory Distributor. Just present the Mallory Money Tree coupon below.

MAIIOR Y

MALLORY DISTRIBUTOR PRODUCTS COMPANY
a division of P. R. MALLORY \& CO. INC.
Box 1284. Indianapolis. Indiana 46206; Telephone: 317-638-5353

Batteries • Capacitors - Controls • Security Products • DURATAPE® - Recorders • Resistors - SEMICONDUCTORS - SONALERT® • Switches • Timers

new etimely

Recording cuts coming

A threatening shortage in the production of vinyl, the petroleum-based raw material for modern records, is causing postponements and uncertainty in the recording industry. "Nobody says, 'We don't have any vinyl but some pressers have gone to two or three days production a week" reports the head of one company that depends on outside pressers for its records.
Some reporters are hoping that the threatened shortage may increase the talent/vinyl ratio in records, as companies eliminate marginal recordings in favor of the better artists. However, the situation may well make it hard for the new performer-talented or otherwise -as record companies concentrate on pressings of name artists that are sure of a good market.
Oddly, a major cause of the tight situation-other than international politics-is said to oe an exploding demand for plastic plumbing pipe, which -like phono records-is made of polyvinyl chloride.

First domestic satellite system launched over U.S. and Alaska

The nation's first domestic satellite communications system was inaugurated January 8 , in ceremonies attended by the Governor of Alaska. the Lieutenant Governor of California. the Chairman of the FCC, Senator Jacob Javits of New York, and other public figures from Alaska and elsewhere
In the first phase of the joint operation by RCA Global Communications and RCA Alaska Communications, channels are being leased on Canada's Anik II satellite, which is in stationary orbit over the Equator at 109° west Iongitude, and
"sees" the whole Western Hemisphere Later, RCA satellites, the first of which is expected to go into operation in late 1975, will take over
The present earth stations are near New York City, San Francisco, Anchorage and Juneau. Other stations are planned, especially in Alaska.

The Satcom system is now using the $5925-6245-\mathrm{MHz}$ (5.925 and 6.245 GHz) band for transmission from earth stations to satellite, and the $3700-4200-\mathrm{MHz}$ band from satellite to earth.

THE 1976 satellite and launcher, exhibited in model form by Howard. R. Hawkins, Executive Vice president of RCA. The three satellites will carry 24 transponders each and will be lifted into space by Thor/Delta rockets.
A combination of frequency division multiplexing-frequency modulation (FDM/FM) and FM single-channel-percarrier techniques are used, with a capability of up to 1000 one-way FDM/FM voice channels and 600 one-way voice channels with the single-channel percarrier technique.

Multi-grid television tube improves picture brightness

The Quintrix picture tube was unveiled by Panasonic in its first 19 -inch Quatrecolor television receiver at the recent Chicago Consumer Electronics Show.
The new tube is stated to maintain sharp focus on high brightness pictures.

This is due to an additional focusing grid that minimizes blooming. A high-voltage chassis and high electron current increase the brightness. Picture contrast is improved by a negative guard-band matrix.
-Panasonic Quintrix Picture Tube

PANASONIC QUINTRIX PICTURE TUBE uses an additional grid to produce effects.

A second phase, is expected to go into operation in 1976. It will use three satellites, each with 24 transponders;each capable of handling $1000 \mathrm{FDM} / \mathrm{FM}$ and 600 single voice channels, as well as a television channel and a high-speed data stream. The number of ground stations will also be augmented
The new system will reduce costs of communications across the United States, as well as between the 48 states and Alaska, and makes live television more practical economically for Alaska. It will also permit upgrading telephone facilities in that state, and will facilitate introducing specialized services, such as transmitting programs for CATV operators.

Mrs. David Sarnoff

Lizette Sarnoff, widow of David Sarnoff, died January 8 in New York City, after a brief illness. She was the wife of David Sarnoff from July 4, 1917. until his death in December 1971. Speaking only French when she met the young David, she is credited with teaching him just enough French to propose
Mrs. Sarnoff, an accomplished amateur sculptress, was a trustee of the Sculpture Center of New York City, a member of the Women's Executive Committee of the United Hospital Fund, a member of the Manhattan chapter of the Board of the National Women's Committee of Brandeis University, a member of the Executive Committee and honorary national chairman of the Women's Division, Albert Einstein College of Medicine, and honorary vice president of its New York chapter
Mrs. Sarnoff is survived by her three sons: Robert W. Sarnoff, New York, Chairman and Chief Executive Officer of RCA; Edward Sarnoff, New York. Chairman of the Board, Fleet Services Inc., and Thomas W. Sarnoff, Beverly Hills, California, Staff Executive Vice President, West Coast, the National Broadcasting Company. Also surviving are nine grandchildren.

Fourth Annual Hugo Gernsback Scholarship Awards

Radio-Electronics announces the fourth Annual Hugo Gernsback Scholarship Awards for 1974. The program consists of a $\$ 125$ grant to the most deserving student at each of eight technical homestudy schools serving the electronics field

Eight second awards to the second most deserving student at each of these homestudy schools, have been provided by RCA Electronic Components, Harrison
(cominued on page 12)

Essential Electronic Servicing Help from Sams

Here are seven extremely helpful books that can make a serviceman's work much easier. Five of them are just off the press, one is a new second edition, and one came out in '73. It'll pay you to check them out.

VIDEO TAPE RECORDERS

By Harry Kybett

This basic text on the fast-growing field of helical vtr's contains information seldom found in service manuals, which only cover specific models. It explains the fundamentals of video tape recording: describes electronic circuits and mechanical systems in currently available machines; lists basic problems encountered and their solutions: and presents recent developments in the field. 352 pages, softbound No. $21024 \$ 8.95$

electronic

equipment

ELECTRONIC FLASH EQUIPMENT

By Verl Mott
A fully informative book on the use of flash/strobe equipment. the problems sometimes encountered, and the service information needed to overcome those problems. Its information on the basic flash unit, flash tubes, triggering circuits. power sources, storage, and service can save you lime and frustration 112 pages, softbound.
No. $21020 \quad \$ 4.50$

1-2-3-4 SERVICING HI-FI TURNTABLES
By Forest H. Belt
Greatly simplifies understanding of the mechanisms in terms of four divisions: record changers by sections, assemassemblies and mechanical parts of following chapters cover specifics for following chaplers cover specilics for each type of drive system, tone arm diagnosis locating isolating and pin diagnosis-locating, isolating, and pin poining fauks is explained so tha ervicing 1 be accomplished quickly and easily. 192 pages, softbound No. $21032 \$ 4.95$

TUBE SUBSTITUTION HANDBOOK, 17th Edition

By the Howard W. Sams

Engineering Staff
Quick and accurate information for making suitable substitutions wher exact replacements are not available Lists over 18,000 replacements in seven sections: American receiving and picture tubes, industrial tubes communications ard special tubes cross reference between American and foreign lubes 90 pages, sollound oreign tubes. 96 pages, softbound No. 21007 \$1.95

SERVICING BIOMEDICAL EQUIPMENT

By Elliott S. Kanter
Introduces the biomedical technician to the specialized types of electronic and electromechanical devices used in present-day hospitals. Describes test procedures, ser vice and maintenance techniques and safety factors of centrifuges electrocardiographs, defibrillators monitoring devices, oxygen and vacuum devices. 160 pages, softbound.
No. $21011 \$ 5.50$

ELECTRONIC SECURITY SYSTEMS

By Leo G. Sands

The principle and operation of the various electronic devices used for industrial and home security systems are covered in detail. Chapters on: scope and application, switches and relays, sensors and encoders, indicators and alarms. electrical and electronic control and alarm circuits, security communication and systems installation. closed-circuit ty No. $23205 \$ 5.95$

Servicing

Guide

NRI "hands-on" training in Television, Communications, Electronics and Computers can give you as much as 2 years of on-the-job experience.

EARN YOUR FCC LICENSE - OR YOUR MONEY BACK
NRI Communications training programs will qualify you for a First Class Commercial Radiotelephone License issued by the FCC. If you fail to pass the FCC examinations for this license after successfully completing an NRI Communications course we will, on request, refund in full the tuition you have paid. This agreement is valid for the period of your active student membership and for six months after completion of your training. No school offers a more liberal FCC License agreement.

Experience is still your best teacher

NRI Achievement Kit is educator-ac. claimed and the original "starter" kit in home study training. Imitated but never duplicated, this kit is designed and personalized for you and your training objective. It has one purpose - to get you started quickly and easily.

"Bite-Size" Texts
average an easily-digested 40 pages of well-illustrated, scientifically prepared subject matter in the course of your choice. Questions in each book are carefully hand-graded and returned to you with helpful instructional notes. You get unlimited personal help from the day you enroll.

Designed-For-Learning Equipment
Like this phone-cw transmitter (Kit \#7 in the Communications course) is engineered from chassis up to demonstrate principles you must know. NRI does not use modified hobby kits for training, but the finest parts money can buy, professionally and educationally applied.

... here's how you get it with unique NRI training at home

Ask any teacher, job counselor, engineer, technician or prospective employer about the need for practical application of theory in Electronics. He'll tell you Electronics is as much a "hands-on" profession as dentistry or chemistry. That's how you learn at home with NRI. You prove the theory you read in "bitesize" texts, by actual experimentation with the type of solid-state, transistor and tube circuits you'll find on the job today - not hardware or hobby kits. You introduce circuit defects, analyze results, discover quickly the kind of trouble-shooting and design techniques that will make you employable in Electronics.

Train with the leader-NRI

NRI lab equipment is designed from chassis up for effective, fascinating training - not for entertainment. The fact that end results are usable, quality products is a bonus. In Communications, for example, you build and analyze, stage by stage, your own 25watt phone/cw transmitter. It's suitable for use on the 80 -meter amateur band, if you have an interest in ham radio. In TV-Radio Servicing your practical training gives you your choice of monochrome or color TV sets. All training equipment is included in the low tuition - you pay nothing extra. Discover for yourself the ease, excitement and value of NRI training. Mail postage-free card today for new NRI Catalog . . . or use the coupon below. No obligation. No salesman will call on you. NATIONAL RADIO INSTITUTE, Washington, D.C. 20016.

new etimely

N. J. This award eonsists of an RCA WV-529A Service Special VOM, user price \$53.50 each

The scholarships were established by Radio-Electronics, in memory of the late Hugo Gernsback, electronic pioneer, inventor and publisher to perpetuate Mr. Gernsback's interest in developing the technological skills of young people

Hugo Gernsback founded RadioElectronics magazine in 1929 for electronics service technicians, engineers, and advanced hobbyists. The 1974 scholarship award winners will be announced in the magazine during the course of the year.

The eight schools participating in the program are: Bell \& Howell Schools, Cleveland Institute of Electronics, CREI Capitol Radio Engineering Institute, Grantham School of Engineering, International Correspondence Schools, NRI Training, National Technical Schools and Sylvania Technical School

GEORG NEUMANN OF MICROPHONE FAME receives the Maker of the Microphone Award for 1973. The award given each year by Deutsche Grammophon for an outstanding contribution to the world of sound, is presented by Peter Burkowitz (left), engineering director of the firm, in memory of Emile Berliner, inventor of the microphone and disc record, and founder of the compamy. Neumann is discus sing the award with his managing director, G. Luetzkendorf (rlght).

CET's now number more than 7 K

The International Society of Certified Electronics Technicians (ISCET) reports that over 7,000 cerfified technicians are now registered. According to Ron Crow, executive director of the program, there are CET's in all 50 States, in Canada and Mexico, and in 15 other countries.

Certified Electronic Technicians are persons with a total of four years experience or schooling ir electronics technology and who have passed the written examination administered by ISCET (a subsidiary of NESDA, the National Electronic Service Dealers Association)

The examination consists of a basic section, which all examinees must take, plus several options: Consumer Electronics, Audio-Hi Fi, Communications, Industrial and MATV reception

The program is already making itself felt, and according to Dick Glass, CET, executive vice president of NESDA, some employers are beginning to pay a higher hourly rate to CET's than to non-certified employees

CET exams are given quarterly, on June 15, Sept. 15, Dec. 15 and March 15. Most
test locations are in public or commercial educational institutions. (Tests in the New York City area may be taken at RADIOELECTRONICS.) The exam fee is $\$ 10$. For further details, or to reserve a seat at the next test session, technicians are invited to write to ISCET, 1715 Expo Lane, Indianapolis, IN 46224

MEETING OF CETA AT POUGHKEEPSIEhears Radio-Electronics' Editor Larry Steckler discuss warranties. CETA (Consumer Electronics Technicians Association) has been active in the Poughkeepsie-Kingston area of New York, and had already brought up the matter of warranty abuse in a Newsletter last Fall. Left to right in the photo are Mis. Ken Parese, CET; Ken Parese, CET, treasurer of CETA; Larry Steckler, CET, at podium; Ron Palluth, CET, president of CETA; Mrs. Palluth, and Dick Jones, vice president of CETA.

Radio-Electronics is published by Gernsback Publications, Inc. 200 Park Ave. S. New York, N.Y. 10003 (212) 777-6400 President: M. Harvey Gernsback Secretary: Bertina Baer

ADVERTISING SALES

EAST

Stanley Levitan, Sales Manager
Radio-Electronics
200 Park Ave. South
New York, N.Y. 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph J. Bergen
The Ralph J. Bergen Co.
6319 N. Central Ave.
Chicago, III. 60646
(312) 792-3646

PACIFIC COAST/Mountain States
Jay Eisenberg
J.E. Publishers Representative Co., 8732 Sunset Blvd., 4 th Floor Los Angeles, Calif. 90069
(213) 659-3810

420 Market St.
San Francisco, Calif. 94111
(415) 981-4527

SOUTHEAST

E. Lucian Neff Associates

25 Castle Harbor Isle
Fort Lauderdale, Florida 33308
(305) 566-5656

Build yourself a better car! Build an Archerkit" from Radio Shack

Radio Shack's Deluxe Capacitive Discharge Ignition puts more "Go" in every gallon! It delivers 50% more spark power for faster acceleration and more complete combustion. That means you get better gas mileage, and your points and plugs will last 3 to 10 times longer. An in/out button lets you make instant performance comparisons with your old ignition. And it makes tuneups easier. The thorough step-by-step manual makes it easy for even a first-time kit builder to assemble

Deluxe, High-Intensity Timing Light Kit
 and install-no wires to cut. Improves any 12 -volt negative ground vehicle. $=28-3203$

1995 with All Cables
Retail prices may vary at individual stores.

Archerkit Radio'shaek

and ALLIED RADIO STORES
Ha TANDY CCRPORATION COMPANY
P. O. Box 1052, Fort Worth, Texas 76107

This unusual switch cable TV user into your customer.

The new exclusive Winegard

 Cablemate TV Signal Selector lets your customers enjoy the advantages of both cable and TV antenna reception.If there's cable TV in your area, a lot of your customers already have, or someday will have, a cable hookup. Most of them sign up to get long distance stations or local programming not possible with an outdoor antenna. At the same time, cable people claim that every subscriber will get better reception all the way around.

But the cable subscriber usually gets shortchanged. He soon finds out that the channels he regularly watched with an outdoor antenna don't come in as clear on cable. And these are almost always the network stations, the ones people watch 90% of the time.

Technicians Frequently Get Blame

The problem of poor quality cable reception on one or more channels is a common one in city after city. Too often the TV technician is called for TV set repair when the cable is really at fault.

Cable outages, too, are a frequent customer complaint.

That's where you come in. With a Winegard Cablemate TV Signal Selector and a Winegard outdoor antenna.

Cablemate lets you connect cable signal and the antenna signal to the TV receiver. The viewer simply flips a switch to select antenna or cable.

canturn a new TV antenna

Not "Just Another Switch" Cablemate, of course, is not an ordinary switch. It has specially designed circuitry with 58 db isolation to prevent interference between cable and antenna signals. And it gives you a choice of coax or twinlead antenna input.

MODEL CTS-2

(Illustrated)
$\$ 16.95$ suggested list.
Model CTS-1 (same, but has 75 ohm and 300 ohm output to set and does not include coax or band separator): \$14.95 suggested list.

Customers Are Waiting For You

If your cable TV customer already has a good antenna on the roof, then all he needs is Cablemate. But if he has an inadequate antenna or none at all, then he's a hot prospect for both an antenna and Cablemate. That's profitable business . . . and the easiest way yet to sell a TV antenna to a cable subscriber.

As you can tell, you stand to gain a lot from one switch! But then remember it comes from Winegard, the folks who consistently originate new and better products for the TV service industry.

For more information, circle the reader's service card or write to: Winegard Company, 3000 Kirkwood Street, Burlington, Iowa 52601

There is a distinct difference between tape equipment mass-produced by a consumer manufacturer and tape equipment built by a professional audio manufacturer. At Crown International this distinct difference involves five things: over engineering, rugged construction, hand-crafting, exhaustive testing and conservative rating. After 26 years, Crown is the only remaining original U.S. tape equipment manufacturer still marketing professional quality to discerning audiopniles

The Crown tape equipment line is designed for audio pros who make their living by recording, to whom an equipment failure at a taping session means money out the window. After four years, when many hi-fi models are traded in, Crown decks still produce recordings with truer fidelity than most new hi-fi decks. No wonder Crowns enjoy such high resale value.

At Crown, each active electronic component, each circuit module and each completed unit is tested from every angle A tape deck undergoes over 100 hours cumulative testing. Finally, each unit is accompanied by its individual hand entered proof-of-performance report.

For free product data on Crown professional monaural, stereo and quadraphonic tape decks and players, write Crown, Box 1000, Elkhart, Indiana, 46514.

Made Only in America

TELEMATIC KC-270 "CRYS-MATE"

Circle 76 on redader service card

A SOURCE OF ACCURATE RF SIGNAIS is a very very handy thing indeed to have around an electronics shop. Ot course. a quarty crystal is considered as a standard. On many occasions we need a quick and easy source of signals, or. we need to check a erystal. The TeleMatic Co. has brought out another of the little handy-dandy test instruments that will do all of these things. This is the model KC-270 Crys-Mate Crystad checher and frequency standard.

It's about the size of a pack of Super-King cigarettes and not nearly as hazardous to your heatith (according to the label). Its a self-contained transistor oscillator circuit. very likely a Pierce. It will oscillate with any stock crystad. Just plog the crystal in and away yougo. It even has a tins pilot light on the panel; if the crystal is oscillating. this glows quite hrighty. No oscillation, no glow, and nogo!

The applications for such a unit would fil! a book. of course. One very handy lest would he for activity of a 3.5 K - MHz crystal from a color TV set. Just take it out of the circuit. and plug it in. If the INDIC ATOR light glows hrightly. this crystal is able to uscillate. If it isn toscillating in the circuit. something else is wrong. With another $3.58-\mathrm{MHz}$ crystal, you might use the Crys-Mate as a substitute color-oscillator. to clear up douhts about operation of a given circuit. A pin-jack on the panel provides of output. You can pluga short piece of wire in here to radiate signals into any circuit. Or: plug a test-lead in here and feed the signal throngh a small capacitor into any circuit
Il you run into a need for an odd-ball marker frequency when doing sweep align-
ment work. plug a erystal on that frequency into the Crys-Mate and couple its output into the sweep generutor"s EXT MARKER input.

Use a $4.5-\mathrm{MHz}$ eystal, and align TV sound i.f. stages and sound detectors precisely. The crystal will give you a very aceurate source of it for "zero-ing" the detector output. Use a $10.7-\mathrm{MH}$ terystal, and chech i.f. alignment of any $F M$ receiver. The FM detector can be precisely set on zero, and the shape of the S-curve checked: this can be done without a scope if you must. For the best FM stereo reception, the detector must be right on the nose.

The oscillator circuit is powered by one 9 -volt battery. Without a crystal plagged in, it draws only 4 Ma. With a crystal. about 50 mA. So. the battery life should be good. An on-off switch is provided to save batlery lile.

A good crystal gives a surprisingly bright glow of the INDIC ATOR light. This can be used as an indication of crystal activity, as well as for the rare but possible intermittent crystal. Some of these will operate but are hard to start. This tester will catch these. as well as eracked crystals. which may oscillate. but will he away off frequency.

For checking frequency of unknown erystals. or known crystals for that matter, feed the of signal from the Crys-Mates if output into the antenna of a communications type radio receiver that will cover the frequency band needed. Now. feed in the if output of an if signal generator. Tune the radio dial until you heat the "thump" of the Crys-Mate's unmodulated output. (If you Want to hear it more easily, turn on the bfo). Now, lume the if signal generator umil you hear a zero-beat. The signal generator is now on the erystal frequency. If the receiver dial is very well calibrated. it can be used to find the frequency. Either one can be used to check the other

You will usually be able to pick up a great many harmonics of the erystal's fundamental freguency, as you go higher in frequency on the dial. The lowest frequency signal, at the greatest amplitude. will be the fundamental. I have heard signals as high as the twentieth harmonic. on a senstive vht communications receiver.

The crystal socket used will tit the small type crystad cases. like those used on the $3.58-\mathrm{MHz}$ color crystals. If you have one whith a different case. just slick a couple of pieces of sold wire in the socket, and hend them until you can mate each one touch one pin of the crystal heing tested. That's all you need: if it's good. the light will tell you.
The Crys-Mate isn't an expensive instrument, hut it can certainly be a very useful one. Youll find los of things to do with this piece of test gear.

R-E

Energy shortages tell us we have to change our driving style. Now! It doesn't mean we have to go back to horse and buggy days. But it does mean we have to make every drop of gas give us the most go for our money. Anyone with horse sense knows that a well-tuned car gets better mileage, and in times of fuel shortages, better mileage means a lot.

The Mark Ten B Capacitive Discharge System keeps your car in better tune so it burns less gas. Using Mark Ten B is more than horse sense. It's the smart move under the hood, helping a nation survive an energy crisis and keeping you on the road. Delta Mark Ten. The best way to go.

Why a Sylvania home training program may be

your best investment for a rewarding career in electronics

4 LEADER IN ELECTRONICS TRAINING

Over the years, Sylvania Resident Schools have trained thousands of men and women for key positions in the electronics field. Now, through Sylvania Home Training, you can receive the same high-quality career training at home. In your spare time. While you hold your present job. Remember, this training is designed with one purpose in mind - to give you the background you need to land the electronics job you really want!

2
 AUTOTEXT TEACHES YOU ELECTRONICS RAPIDLY, EASILY.

AUTOTEXT, offered exclusively by Sylvania, is the proven step-by-step method of home training that canhelp you learn the basics of electronics quickly and easily.

3 cassette system

This innovative learning-by-hearing approach is a special option that adds an extra dimension to AUTOTEXT. It's almost like having an instructor in your own home. As you play the cassette tapes, you'll have an instructor guiding you through your AUTOTEXT lessons. Explaining the material as you read it. Going over schematics with you, reinforcing the basic electricity and electronics study materials with you. Everything you need to know to get you started towards a highly regarded position as an electronics technician - all in an easy-to-understand, conversational tone.

SPECIALIZED ADVANCED TRAINING

For those already working in electronics or with previous training, Sylvania offers advanced courses. Youcan start on a higher level without wasting time on work you already know.

5
 PERSONAL SUPERVISION THROUGHOUT

All during your program of home study, your exams are reviewed and your questions are answered by Sylvania instructors who become personally involved in your efforts and help you over any "rough spots" that may develop.

6 hands-on training

To give practical application to your studies, a variety of valuable kits are included in many programs. In Sylvania's Master TV/Radio Servicing Program, you will actually build and keep an all solid-state black and white TV set, and a color TV set. You also construct an oscilloscope which is yours to keep and use on the job.

FCC LICENSE TRAINING - MONEY BACK AGREEMENT

Take Sylvania's Communications Career Program - or enter with advanced standing and prepare immediately for your 1 st , 2nd, or 3rd class FCC Radio Telephone License examinations. Our money-back agreement assures you of your money
back if you take, and fail to pass, the FCC examination taken within 6 months after completing the course

CONVENIENT PAYMENT PLANS

You get a selection of tuition plans. And, there are never any interest or finance charges.

SEND ATTACHED POSTAGE PAID CARD TODAY! FREE DESCRIPTIVE BOOK YOURS WITHOUT OBLIGATION!

Sylvania Technical Systems. Inc

GIB SYLVANIA

In the Master TV/Radio Servic ng Program, you build and keep the all solid-state black and white TV set, the cclor TV set, the oscilloscope and the multimeter shown above.

New-Low Distortion

COMPRESSOR expander

Restore the original dynamic range of your music-increase your stereo separation, OR make your own background music with our new compressor-expander kit. Our circuit uses an electronic gain control integrated circult for fast attack, slow release type operation with none of the lags and distortion found in the old photocell lamp controlled circuits. Expansion beginning level and compression beginning signal levels are adjustable. Up to 20 db of expansion and 40 db of compression are avaltable with less than 1.0 思 THD under worst case condifions. Typically less than . 05% under most operating conditions. Frequency response of 2 Hz to 100,000 Hz . Self contained power supply. Con. nects to preamp eutput, or to "Tape Monitor" jacks if available.

EX-1 Kit 3.0 lbs
$\$ 29.95$
REVERB ADAPTOR

Put more life into vour music with this self powered stereo reverb adaptor system. The reverb circuit electronically simulates the longer reverberation time of a large hall, giving your music more life and realism. Separate spring units and controls for each channel may be used with any stereo system by connecting the adaptor between the amplifier and preamp.

No. 239 Reverb Adaptor Kit with two spring units
Shipping Weight $51 / 2 \mathrm{lbs}$. $\$ 38.50$

Circle the reader service card number

 below for a FREE copy of our latest catalog.
TIT SOUTHWEST TECHNICAL products corporation

DEPT. REL

219 W. Rhapsody
San Antonio, Texas 78216

NICAD CHARGING RATES?

 by JACK DARR SERVICE EDITORa reader writes. I want to charge NiCad batteries, in a 4 -cell unit. Can I use resistors to regulate the current flow, with either a transformer operated dc power supply or a lineconnected charger? Also, how about the new battery units I've been hearing about, that will charge in 3 or 4 hours. Can I adapt the regular types for this, without damage?
Let's take this a piece at a time. Yes. you can use resistors to regulate the current flow. Charging at too high a rate can damage the cell, or even cause it to explode. For correct charging use a do voltage just enough greater than the cell voltage to cause the charging current to flow at the given rate

This maximum current varies with the battery type. There are quite a few different sizes, from the small "hutton " cells up to the large C and D cells: For an Eveready type B20 cell, at 1.25 volts, which must be charged at a rate not greater than 2.0 mA for 14 hours, up to the high capacity CH 2.2 T cell (also a 1.25 -volt type. but it can be charged at a rute of $220 \mathrm{m4}$.)
Voltages will be given as "volts per cell" or 1.25 volts each. To get higher voltage, the cells are simply stacked in series. Although the charging voltage will vary, the charging current must be the same for multiple cells as for one cell, since they are in series. Charging voltage for a single cell will be 1.35 to 1.45 volts. For a 15 -volt "battery" (group of cells) the charge voltage would be 16.2 to 17.4 volts. for a $50-\mathrm{mA}$ rate in this one battery.

As for charging circuits, I would personally prefer a transformer-isolated dc power supply circuit, like Fig. 1. A single half-wave rectifier can be used; no filtering is needed. (I don't like line-connected circuits; they scare me.) With a de supply like this, you could adapt it for different battery voltages by simply hooking a large bleeder resistor as a voltage divider across the do output. By making this variable or ad-

FIGURE 1
justable, the charging voltage and current can be set to any needed value.

The fast-charge types

The fast-charge types are probably the Eveready units called "FastCharge Hustler" type cells. They can be completely recharged in about 3 to 4 hours. For uses such as cordless power tools, etc.

Before you try to recharge $A N Y$ NiCad cell at a high rate, be very sure tha it is one of the fast-charge types!

FIGURE 2
A specially designed charger should always be used with these. The Eveready Battery Handbook recommends several circuits for this; the simplest is shown in Fig. 2. Note the thermostat. When this type of cell is being recharged, the cell-temperature is the best indicator of reaching a fullcharge condition. During recharge, the cell stays at almost a constant temperature of around $75^{\circ} \mathrm{F}$. When it approaches a full-charge, the temperature rises very rapidly. When it reaches cutoff temperature. of around 112 to $120^{\circ} \mathrm{F}$, it's fully charged. The thermostat opens at 110 to $120^{\circ} \mathrm{F}$. and recloses from 95 to $105^{\circ} \mathrm{F}$
This action will automatically start recharging again, just as soon as the cell has cooled down far enough. So, the cell will be kept at full charge at all times, without over-charging. It 11 always be ready to go at full charge

There are several different charging circuits given; they range from the simpler one of Fig. 2 up to an electronic voltage-regulated type. In this, a small thermistor is built right into the battery. This is the temperature-sensor which controls the electronic voltage regulator:
Incidentally, the complete title of the invaluable Handbook used for the preparation of this Appliance Clinic is the "Eveready Battery Applications Engineering Data", and is published by Union Carbide Corp., Consumer Products Divison, 270 Park Ave. New York. N.Y. 10017. It is available at most radio-TV supply houses, for $\$ 6.95$.

TESTING!
 with MITS lab quality test equipment

One

SG 1900-The Audio sweep Generator provides the capabilities of both a flxed frequency (CW) and a sweep generator in a laboratory quality instrument. Modes include CW, linear sweep, and log sween with a sweep time of 10 milliseconds to 100 seconds. Waveforms are sine, sauare, and triangle. The range is from 1 Hz to 100 KHz . The output has fixed attenuation levels of 0,20 , and $40 \mathrm{~dB} \pm \mathbf{1 d B}$, as well as continuously variable attenuation.
Prices: Kit
$\$ 119.95$ Assembled
\$149.95

WG 1700 - The Wavetorm Generator/Frequency Counter is well suited to a wide variety of test work. Six carrier waveforms (sine, triangle, square, ramp, sawtooth, and pulse) and three internal AM or FM modulator waveis 1 frequency range is 100 Hz to 150 KHz in six overlapping ranges. Both putputs are buftered for low output impodence. The unit aso accepts outernal AM or FM modulating signals. The frequency counter with ediustexternansitivity measures the waveform oenerator output frequency and trequency of external signals trom 1 Hz to over 10 MHz with input impedance of 10 ance thok ohms.
Prices: Kit \$199.95 Assembled \$249.95

DV 1600 - The 2-1/2 digit Digital Voltmeter is a perfect companion for MITS other fine test equipment. Features include full scale measurement of alternating and direct current in five ranges from. 1 ma to 1 amp, measure* ment of AC and DC voltage in four ranges to 1000 volts, and measurement of ohms in six ranges to 10 megohms. The resolution in low ranges for voltage is 10 mv ; for current, $10 \mu 8$; and for resistance, 1 ohm. The DC accuracy is $\pm 5 \%$ and the $A C$ accuracy is $\pm 1 \%$. Other features include autopolarity and 100% overrange capability on all ranges, which effectively doubles full-scale capability.
Prices: Kit \$ 89.95 Assembled........ . \$129.95

ICT 1800 - The integrated Circuit Tester is ideal for testing digital integrated circuits and for breadboarding IC's while developing circuits. The eighteen LED indicators show the status of the IC under test. The internal 5 volt 1 amp power supply, which has overtemperature and overcurrent shutdown capabilities, is also available for external use. The cross bar switch allows complete programming ing tures include an internal two speed clock, single step capability, and four each remote outpu
Prices: Kit \$119.95 Assembled \$169.95

ICT 1810 - The Operational Amplitier Tester with fast, simple GO/NO GO test capability tests operational amplifiers for gain, stability, input offset voltage, and input bias current in a dynamic operating environment. a single LED indicates IC status.

Prices: Kit
\$29.95 Assembled
$\$ 39.95$

Power Sale

PS 500 - The 5 volt Power Supply, which has overtemperature and overcurrent shutdown capability, is an deal unit to power TTL, DTL, and other IC's. Features include load regulation at 0.6% and line regulation at 0.005%. Output voltage is 5 volts -.2 volt.

Prices: Kit........ \$29.95 \$19.95 WHILE THEY LAST!

Warranty: Full two-years warranty on assembled units, ninety days on kits.
*Prices subject to change without notice. Available from your local Olson Electronics Dealer.

MITS ${ }^{\text {wc. }}$

"Ireative Electronics"

TV TYPEWRITER CLEARING HOUSE

I am in the process of building Don Lancaster's TV Typewriter project. Things are getting more and more interesting, and I have found myself wish ing that I had someone else who is also building th is to correspond with
I am interested in becoming a "clearing house" for those involved with this project. Will the readers that are willing to participate in an exchange of ideas and problems, please write to me at the following address: Kenneth R. Prouty, WBØJFR, Safeguard MSR Box 42B, Nekoma, N.D. 58355. I will attempt to compile and distribute the names and addresses of those people along with other information or problems that are submitted to me.
When writing, please include as much helpful information as possible - including problems and/or solutions, the sources of the parts that you gathered, add-on's that you propose or have designed, etc.
Participants may wish to exchange cassettes with other owners of the TV Typewriter, exchange data by telephone,
or over the air (if properly licensed). The possibilities are many if enough interest is shown, and I think there will be. Let's hear from you.!

Kenneth R. Prouty
Nekoma, N.D.

A LITTLE CHARITY IS A GREAT IDEA

There are numerous boys' homes around the cities with maybe 100 to 400 boys each. They could use readers' older copies.

To make them last longer with the rough usage they wil get going through so many hands, it is advisable to make them stronger.

Just run library binding, or 3/4-inch clear magic tape down the spine. A tab at the top and bottom on the inside also helps.

So, get your unusued copies into circulation again. The boys will appreciate them. Where is the home nearest to you?
George O. Morrison
Monrovia, Calif.

300 North Zeeb Road Ann Arbor, Michigan 48106
Xerox University Microfilms
35 Mobile Drive Toronto, Ontario, Canada M4A 1H6
University Microfilms Limited
St. John's Road,
Tyler's Green, Penn,
Buckinghamshire, England
PLEASE WRITE FOR COMPLETE INFORMATION

Frimenequaney metref $\mathrm{fm}-240 \mathrm{ch}$

- Tests Predetermined Frequencies 25 to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Altenuator for Full Range Coverage as Signal Generator
The $\mathbf{F M}-2400 \mathrm{CH}$ provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.
The $\mathrm{FM}-2400 \mathrm{CH}$ with its extended range covers 25 to 1000 MHz . The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz .
Frequency Stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$.
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (.000125\% special 450 MHz crystals available).
Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

FM-2400CH
(meter only)
RF crystals (with temper ature correction) RF crystals (less temperature correction) 18.00 ea IF crystals.....................catalog price

CRYSTAL MFG. CO., INC. IO NO LEE - OKLA CITY. OKLA 73102

R-E's Service Clinic

The color TV picture -getting it in focus

by JACK DARR
SERVICE EDITOR
from our mall in the service Clinic, it seems that there are a few things which ought to be cleaned up on the general subject of focusing of a color picture tube. These include what it is, what it does, and what voltages you should expect to read. There are also a few common beliefs that aren't true; we'll see about those too, while we're here.

The focus voltage in a standard tri-gun picture tube is not necessarily a fixed value. That is you can't say "l'll set the focus voltage at exactly 4268 volts and that's it!"' The focus voltage must be a percenage of the high voltage on the ultor at any given instant. This will be roughly $17-20 \%$ of the high voltage. For 25 kV . focus will he very close to 5000 volts. If the high voltage drops, the raster will de-focus it the focus does not drop with it?

Fortunately, for us, the design of the highvoltage supply, in almost all color sets, is such that the focus voltage and the high voltage will rise and fall together. They both come from the same source. The high voltage is developed by the high-amplitude flyback pulse coming back from the yoke. during the horizontal retrace interval, or tlyback time. This is stepped up because the high-voltage winding is coupled to the primary of the tlyback. Peak voltage will be about 30 kV . This is rectified. and ted to the ultor of the picture tube.

If you check the schematic of a tlyback, you'll see that the focus rectifier is fed directly from this pulse. It is tied to the same connection as the plate of the horizontal output tube, on the primary of the flyback. Typical pulse amplitude at this point is about 5000 volts peak. This is connected to a small high-voltage rectifier, filtered just a little: then applied to the G3 or focus grid of the picture tube. This isn"t actually a grid. There are three little cylinders, one in each gun, all connected together.

Like a grid. though, this is a single-ended circuit. It goes nowhere; just sticks out inside the tube and stops. Now; here's a valuable fact which can be used in analyzing many focus problems. This is absolutely a dry circuit; no current tlows in it at all. This is why you find very high value resistors in series with the focus supply. Since there's no current flow, there's no voltage drop across them.

If you do see a voltage drop, the chances are that this is a meter drop due to the loading effect of your voltmeter. Highimpedance voltmeters, with high-voltage probes, should always be used for any readings in these circuits.

Under some fault conditions, you will find current being drawn by the focus circuit. This causes a large voltage drop across the big series resistors, a drop in focus voltage at the socket, and a severe de-focusing of the raster. The main cause is gas in the piclure tube. Too many of us call this grid current, but it's really gas current. In any case. there's a quick check.

Pull the picture tube socket off the tube. Now, recheck the focus voltage at the socket pin. If it has now come back up to normal. and the focus control will cause a normal variation (about 2000 volts), the focus circuit is OK but you need a new picture tube! If the focus voltage does not come back up with the picture tube disconnected, then you check the focus supply circuit.

First fallacy; what is focus? The focus voltage does exactly ONE THING. It focuses the horizontal scaming lines in the raster! Period. It has absoblastedlutely nothing to do with the horizontal resolution of the picture and darn little with the vertical resolution.

De-focusing will cause a slight smear of all objects in the picture. if it's minor. If it's bad enough (1000 volts low. Say). all objects will be badly smeared. A complete loss of the focus voltage will usually put the raster completely out. If you find a dark screen. but the high voltage is up to normal, read the focus voltage just for luck. If you can adjust the focus control, and get good sharp scanning lines on a blank raster, the focus voltage is normal!

Fallacy No. 2. One common complaint in the mailhag is. "This set has focus problems! The close-ups are sharp, but things in the background are always fuzzy!" Check the scanning lines. If these are sharp. your focus is good. Most especially, if close-ups are sharp. This phenomenon is perfectly normal. It's due to the "f-stop" setting being used on the lens of the TV camera.

Check any photograph with a clear sharp image of something in the center. Now check the background: it will be fuzzy and "out of focus." A lens will not focus over an imfinite distance. When you "stop down" or make the aperture smaller, the depth of focus (depth of field) will be longer. but you get much less light. Beside this, they generally don't want the background anyhow. What theyre interested in is the person or thing in the close-up.

Focus rectifiers; problems

The original color sets used small tuhes as focus rectifiers, such as the IV2 and others. The new sets use solid-state focus rectifiers.
 CUT WIRE \& CABLE INSTALLATION COSTS
without cutting into insulation! SAFE! Grooved Guide positions wire for proper staple envelopment! Grooved Driving Blade stops staple at right depth of penetration to prevent cutting into wire or cable insulation!

No. T-25-Fits wires up to
$1 / 4^{\prime \prime}$ in diameter.
Same basic construction and fastens same wires as No. T-18.

Also used for RADIANT heat wire

Uses T-25 staples
with $1 / 4^{\prime \prime}$ round crown in $9 / 32^{\prime \prime}$, $3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}$ and $9 / 16^{\prime \prime}$ leg lengths.
$\mathrm{T}-18$ and $\mathrm{T}-25$ staples alsoavailable in Monel and with beige, brown and ivory finish at extra cost.

Arrow Automatic Staple Guns save 70% in time and effort on every type of wire or cable fastening job. Arrow staples are specially designed with divergent-pointed legs for easier driving and rosin-coated for greater holding power! All-steel construction and high-carbon hardened steel working parts are your assurance of maximum long-life service and trouble-free performance.

Ask your Electrical Supply Dealer
or write for further details.

Circle 12 on reader semice card

TELEMATIC TRANSVERTER WORKS WITH ANY TEST RIG

PLUG IN-to service solid state UNPLUG-for tube type

Matches RCA • ZENITH MOTOROLA SYLVANIA MAGNAVOX And All Others!

reader questions

HOW TO WASTE DC VOLTAGE

I'm restoring an old radio, a Crosley 66TC. Original power transformer was 300 wolts, and I've got one with 350 wolts each side of the center tap. How can I get rid of the excess de woltage? -E.S., Laura, Ohio
"Throw it away". Open the HV
secondary center tap and add a resistor to ground. Adjust the value of this so that it develops whatever voltage drop

you want. This will subtract from the dc "B + " voltage

This shouldn't cause any hum, but it might. If so, add a filter capacitor as shown. Don't forget to connect the + to ground. A lot of the older sets used this negative voltage for bias on power tubes, etc

ODD COLOR PROBLEMS

The color keeps popping in and out, and acting very funny, on this GE CB2I chassis. All tubes in the color section have been replaced; no help. Where do I go from here?-H.S., Vincennes, Ind.

After all of the tests you have made (which were right!) I believe I'd go and have a look at that little neon lamp in series with the burst amplifier grid. This has caused some intermittent color problems in the past. Try a new one.

THE BOOST THAT DIDN'T!

This Motorola TS-579-A has the most weird group of symptoms I ever saw! Raster only half-width, high voltage low, boost low. How'ever, the 61)Q6 cathode current is IIO Ma.; screen voltage OK. grid drive 150 volts peak to peak. Tubes good

Suspecting the boost capacitor, I bridged it; no help. There's another one in there; bridged it. No help. Noticed that the schematic said the boost capacitor went to +135 volts. Thought this was a typo, and shunted a capacitor from boost to +270 volts. Whammo! I got the raster, boost and high-voltage back!

Later, I checked the Motorola schematic, and the boost capacitor does go to + I35 volts! But, it won't work with it hooked there. What's going on?-J.G. Mena, Ark.

That isn't a typo. The boost capacitor does go to +135 volts on this chassis. I thought the same thing, the first time I ran into it. After some intensive head-scratching, I tried the same thing you did-shunting the boost capacitor to the +270 volts. That other $0 . I-\mu \mathrm{F}$ capacitor you see in there is the

Our litite "3-incher" is bigger than anybodys!

LBO-302
3" DUAL TRACE/ DUAL CHANNEL TRIGGERED SCOPE
\$699.95 With accessories

Conquer the test bench squeeze! Obtain lab grade quality! Here's solid state accuracy plus push-button convenience for trig. \& auto. sweep \& "free run" momentary function. - 10 MHz b'width - 10 mV p-p/dir to 5 Vp -p/div Vert. Sen-
sitivity, 9 steps. - Sep. or simult. sweep display, ch 1 \& 2 - alt., chopped, algebre added and X-Y vector. - Sweep range from $1 \mu \mathrm{~s} / \mathrm{div}(0.2 \mu \mathrm{~s}$ $w / 5 \mathrm{X}$ mag) to $0.2 \mathrm{~s} / \mathrm{div}, 17 \mathrm{steps}$. Polarity inversion on th 2. - $4^{3} / 4^{\prime \prime} \mathrm{H}, 10 \mathrm{lbs}$.
"Put us to the test"
151 Dupont St., Plainview, L.t., N.Y. 11803 (516) 822.9300

Now....the most enjoyable do-it-yourself project of your lifeA Schober Electronic Organ!

You'll never reap greater reward, more fun and proud accomplishment, more benefit for the whole family, than by assembling your own Schober Electronic Organ.
You need no knowledge of electronics, woodwork or music. Schober's complete kits and crystal-clear instructions show you - whoever you are, whatever your skil? (or lack of it) - how to turn the hundreds of quality parts into one of the world's most beautiful, most musical organs, worth up to twice the cost of the kit.
Five superb models with kit prices from $\$ 500$ to around $\$ 2,000$, each an authentic musical instrument actually superior to most you see in stores, easy for any musically minded adult to learn to play, yet completely satisfying for the accomplished professional. And there are accessories you can add any time after your organ is finished-lifelike big auditorium reverberation, automatic rhythm, presets, chimes, and more.

Join the thousands of Schober Organ builder-owners who live in every state of the Union. Often starting without technical or music skilis, they have the time of their lives - first assembling, then learning to play the modern King of Instruments through our superlative instructions and playing courses
Get the full story FREE by mailing the coupon TODAY for the big Schober color catalog, with all the fascinating details!

Computer Engineering

ADVANCED ELECTRONICS CAREER TRAINING AT HOME

If you are too busy to go to college to learn advanced electronics, CREI brings college level training to you. CREI programs give you practical engineering training that you can apply in your work to move ahead to higher paying jobs. And CREI lets you specialize in exactly the area of electronics you want. You have a choice, depending on your qualifications, of 18 different programs.

Not only are CREI programs college-level but arrangements are available for you to earn college credit applicable to advanced degrees.

Only CRDI offers you a choice of 18 programs in advanced clectronics

For over 45 years CREI programs have been recognized by leading technical organizations as effective home study training in advanced electronics.

NEW OPTIONAL LAB PROGRAM

CREI now offers a supplementary ELECTRONIC DESIGN LABORATORY PROGRAM to make learning advanced electronics easier and to give you actual experience to use in your work. Only CREI offers this complete college type laboratory program. You learn to actually design electronic circuits. At the same time you get extensive experience in tests and measurements, breadboarding, prototype building and other areas important to your career.

Qualifications to Enroll. To qualify for enrollment in a CREI program, you must be a high school graduate (or equivalent). You should also be working in electronics or have previous training in this field.
Send for FREE book. If you are qualified, send for CREl's newly published book describing your career opportunities in advanced electronics. This full color book is filled with facts about career opportunities for you.
Accredited Member, National Home Situdy Council CREI, Dept. E-1404-E 3939 Wisconsin Avenue Washington, D. C. 20016
Rush me your FREE book describing my opportunities in advanced electronics. I am a high school graduate
Name
Age
Address
\qquad
Cily
ZIP
If you have previous training in electronics, check here \square
Employed by \qquad
Type of Present Work
Veterans and servicemen, check here for G. I. Bill information \square

CAPITOL RADIO ENGINEERING INSTITUTE
A Division of McGraw-Hill Continuing Education Co. 3939 Wisconsin Avenue, Washington, D. C. 20016

This 10 MHz Triggered Scope is $1 / 3$ the size of comparably performing scopes.

It's a lightweight 13 pounds in your hand and a heavyweight performance wideband scope with a 35 nanosecond rise time on your bench or jobsite. Whether you're servicing or designing industrial equipment or TV, there's the right sweep speed and sync for easiest operation. If you know our Model 1460, the leader in wideband $5^{\prime \prime}$ CRT scopes, you know our new $3^{\prime \prime}$ Model 1431 which gives you the same high performance in one third the size. (Only $43 / 4^{\prime \prime} \mathrm{H} \times 7{ }^{\prime} / 8^{\prime \prime} \mathrm{W} \times 127 / \mathrm{r}^{\prime \prime} \mathrm{L}$)

Servicing, production, inspection, quality control and lab applications are all easier with this versatile all solid-state instrument. Triggering is accomplished with only 0.5 V peak-to-peak. Ten millivolts per division sensitivity, 0.5 usec / cm to $0.5 \mathrm{sec} / \mathrm{cm}$ automatic and triggered sweep in 19 calibrated ranges, and external trigger input are just a few of the reasons you'll like it.

If you have been waiting to buy a portable scope until you could get all the features you'll ever need at a price you want to pay, you've been waiting for Model 1431. Contact your distributor or write Dynascan Corporation

Chicago, IL 60613•(312) 327-7270

The Job

problems faced by many banking provides efficient surveillance is the story of three installations.

by ROBERT S. HAIMES

ATOP UTILITY POLE, the CCTV camera keeps watch on street activities. Camera is monitored by police.

controls. intercoms, CCTV monitors and other related equipment. The area in which the master control console is located, is the most totally secure area in the entire building. The console itself, is misleading: for while it looks formidable, and ultra-complex, it is basically quite simple.

At his console desk, the security officer monitors the arrival of armored cars on CCTV cameras as well as persons entering any department of the bank. He views all of the many parking levels in the building. and the loth floor restaurant-without interfering with normal procedures in the 22-story building. Each of the systems is designed to aid and assist the guards.

Let's start with the two weatherproof CCTV cameras that are mounted on the rear alley side of the building's rollaway basement door. They guarantee that only authorized vehicles such as armored cars and special bank messenger cars can enter the basement parking area. The guard at the console-at a touch-can pan, tilt, or
zoom the CCTV cameta so he can check not only the license of eich vehicle. but the driver as well.

Oncecleared forentry, the guard at the master control raises the door, and then promptly closes it as soon as the vehicle is inside. To continue control inside the batsement, two more indoor cameras are positioned to monitor trafilic.

Protect the computer

To safeguard the computer center at the bank. two CCTV cameras are mounted immediately inside of each access door, giving the guard at the master control console total surveillance of the area. This coverage is teamed with bullet-resistant Plexiglas doors at each of the elevator lobby areas. premise alarms (to detect forced entry) to control access and guards positioned immediately inside each elevator door lobby.

On the four floors occupied solely by bank personnel, the security system is again wrapped around CCTV cameras
that are located inside each elevator lobby door and premise alarms on the glass doors at both ends of each elevator lobby. An intercom is also used for questioning by the guturd in the master control room, if necessary.

The bank's executive offices also contain a CCTV camera, a premise alarm and a secretary-receptionist with a radio-voice link to the main guard room for emergencies.

Fizally. the security system also keeps a check on the upper three floors of parking. all of which are reserved for bank-owned vehicles and cars of bank employees. In addition to regular guards. the parking area is constantly monitored via CCTV camera with voice contact to the master control console. Traffic control gates prevent the general public from using the bank parking areas. and CCTV cameras ensure that the system is foolproof.

CCTV and the police

Another relatively new area for CCTV is in police wark. Let's look at

SECURITY PERSONNEL at monitor watch arrival of armored truck at basement entrance of First Maryland Building. The monitor they are watching is one of nearly thirty mounted in the master control console in the bank's basement area.

THE 14-INCH MONITORS allow pictures on any of the 9 -inch screens in the console to be blown-up for closer observation.

One of our most successful students wrote this ad!

Abstract

Harry Remmert decided he needed more electronics training to get ahead. He carefully "'shopped around" for the best training he could find. His detailed report on why he chose CIE and how it worked out makes a better "'ad" than anything we could tell you. Here's his story, as he wrote it to us in his own words.

By Harry Remmert

"AFTER SEVEN years in my present position, I was made painfully aware of the fact that I had gotten just about all the on-the-job training available. When I asked my supervisor for an increase in pay, he said, "In what way are you a more valuable employee now than when you received your last raise?" Fortunately, I did receive the raise that time, but I realized that my pay was approaching the maximum for a person with my limited training.
"Education was the obvious answer, but I had enrolled in three different night school courses over the years and had not completed any of them. I'd be tired, or want to do something else on class night, and would miss so many classes that I'd fall behind, lose interest, and drop out.

The Advantages of Home Study
"Therefore, it was easy to decide that home study was the answer for someone like me, who doesn't want to be tied down. With home study there is no schedule. I am the boss and I set the pace. There is no cramming for exams because I decide when I am ready, and only then do I take the exam. I never miss a point in the lecture because it is right there in print for as many re-readings as I find

Harry Remmert gives his CIE Electronics course much of the credit for starting him on a rewarding career. He tells his own story on these pages.
neccessary. If I feel tired, stay late at work, or just feel lazy, I can skip school for a night or two and never fall behind. The total absence of all pressure helps me to learn more than I'd be able to grasp if I were just cramming it in to meet an exam deadline schedule. For me, these points give home study courses an overwhelming advantage over scheduled classroom instruction.
"Having decided on home study, why did I choose CIE? I had catalogs from six different schools offering home study courses. The CIE catalog arrived in less than one week (four days before I received any of the other catalogs). This indicated (correctly) that from CIE I could expect fast service on grades, questions, etc. I eliminated those schools which were slow in sending catalogs.

FCC License Warranty Important

"The First Class FCC Warranty* was also an attractive point. I had seen "Q" and "A" manuals for the FCC exams, and the material had always seemed just a little beyond my grasp. Score another point for CIE.

[^1]"Another thing is that CIE offered a complete package: FCC License and technical school diploma. Completion time was reasonably short, and I could attain something definite without dragging it out over an interminable number of years. Here I eliminated those schools which gave college credits instead of graduation diplomas. I work in the R and D department of a large company and it's been my observation that technical school graduates generally hold better positions than men with a few college credits. A college degree is one thing, but l'm 32 years old, and 10 or 15 years of part-time college just isn't for me. No, I wanted to graduate in a year or two, not just start.
"When a school offers both resident and correspondence training, it's my feeling that the correspondence men are sort of on the outside of things. I wanted to be a full-fledged student instead of just a tag-a-long, so CIE's exclusive home-study program naturally attracted me.
"Then, too, it's the men who know their theory who are moving ahead where I work. They can read schematics and understand circuit operation. I want to be a good theory man.
"From the foregoing, you can see I did not select CIE in any haphazard fashion. I knew what I was looking for and only CIE had all the things I wanted.

Two Pay Raises in Less Than a Year

"Only eleven months after I enrolled with CIE, I passed the FCC exams for First Class Radiotelephone License with Radar Endorsement. I had a pay increase even before I got my license and another only ten months later.
"These are the tangible results. But just as important are the things I've learned. I am smater now than I had ever thought I would be. It feels good to know that I know what I know now. Schematics that used to confuse me completely are now easy for me to read and interpret. Yes, it is nice to be smarter, and that's probably the most satisfying result of my CIE experience.

Praise for Student Service

"In closing. l'd like to get in a compliment for my Correspondent Counselor who has faithfully seen to it that my supervisor knows I'm studying. I think the monthly reports to my supervisor and generally flattering commentary have been in large part responsible for my pay increases. My Counselor has given me much more student service than "the contract calls for," and I certainly owe him a sincere debt of gratitude.
"And finally, there is Mr. Tom Dufly, my instructor. I don't believe l've ever had the individual attention in any classroom that I've received from Mr. Duffy. He is clear, authoritative, and spared no time or elfort to answer my every question. In Mr. Duffy, lve received everything I could have expected from a full-time private tutor.
"I'm very, very satisfied with the whole CIE experience. Every penny I spent for my course was returned many

For men with prior electronics training

Electronics Engineering Course
Covers steady-state and transient network theory, solid-state physics and circuitry, pulse techniques, computer logic and mathematics through calculus. A college-level course for men already working in Electronics.
times over, both in increased wages and in personal satisfaction."

Perhaps you too, like Harry Remmert, have realized that to get ahead in Electronics today, you need to know much more than the "screwdriver mechanics." They"re limited to "thinking with their hands"...learning by taking things apart and putting them back together ... soldering connections, testing circuits, and replacing components. Understandably, their pay is limited-and their future, too.

But for men like Harry Remmert, who have gotten the training they need in the fundamentals of Electronics, there are no such limitations. He was recently promoted, with a good increase in income, to the salaried position of Senior Engineering Assistant working in the design of systems to silence submarines. For trained technicians, the future is bright. Thousands of men will be needed in virtually every field of Electronics from two-way mobile radio to computer testing and troubleshooting.

Send for Complete Information - FREE

Many men who are advancing their Electronics career started by reading our illustrated school catalog, "Succeed in Electronics." It tells of the many electronics careers open to men with the proper training. And it tells which courses of study best prepare you for the work you want.

If you're "shopping around" for the training you need to move up in Electronics, this interesting book may have the answers you want. Well send it to you FREE. With it, we'll also include our other helpful book, "How To Get A Commercial FCC License."

To get both FREE books, just fill out and mail the reply card. For your convenience, we will try to have a representative call. If card is missing, use coupon below.

APPROVED UNDER G.I. BILL

All CIE career courses are approved for educational benefits under the G.I. Bill. If you are a Veteran or in service now, check box for G.I. Bill information

Cleveland Institute of Electronics, Inc.
1776 East 17th Street. Cleveland, Ohio 44114 Accredited Member National Home Study Council

Cleveland Institute of Electronics, Inc.

1776 East 17th Stmeet. Cleveland, Dhio 44114

Please send me your two FREE books:

1. Your school catalog, "Succeed in Electronics."
2. Your book on "How'To Get A Commercial FCC License."

I am especially interested in:
\square Electronics Technology
\square Broadcast Engineering
\square Electronic Communications
\square Broadcast Engineering
\square First Class FCC License
\square Industrial Electronics
\square Electronics Technology with Laboratory

\square Veterans \& Servicemen: Check here for G. I. Bill information RE-29
the way a Mototola CC TV system has already made an impressive start on reducing successful burglaries in Hoboken. N.I. Hoboken Police Chief George W. Crimmins says that the syslem has already "proven itself". and Hoboken Mayor Lonis DePascale says that city government wants "all of Hoboken" under the protection of the

CCTV cameras

Prior to the new system. Hoboken tried high-intensity lights with increased patrolling. This was not elfec tive enough.
On paper and in practice, the CCTV system seems simple. Three television cameras are mounted at varying vantage points along streets making up one

SENSORS PLACED ON MONITOR SCREENS detect changes in light intensity, indicating presence of some person in the area being watched. This system is particularly useful after sales hours. At Macy's, cameras scan stockrooms, corridors and sales areas for prowlers who stay in store after closing and steal by night. Now, any movement in normally quiet are a will be detected and a patrol or guard/dog team will be alerted.

CONTROL CENTER AT MACY'S Herald Square store. Dispatchers sit before radio console and CCTV monitors. Here, they can reach or observe personnel throughout the 21 floors of the store. Center is focal point of the racio system and controls a combination of approximately $\mathbf{5 0}$ small 2.way radios and pocket pagers used by security personnel throughout the store. Two smaller ronitors for close-ups (inset) are in the console.
of Hoboken`s most crime-prone neighhorhoods. Cables from the three cameras reach back to police headquarters where officers monitor the 19 -inch screens for signs of lawlessness first. traftic offenses second

Two of the cameras. Motorolat Sll40B hich-performance models-are set in fixed positions where they continuously view the neighborhood street scene. The automatic light compensation for these cameras has a 10,000 to 1 light compensation and 0.5 footcandles sensitivity.

The third camera, is a Motorola S 1170 A low-light-level camera. It delivers clam. sharp pictures in bright sunlight or darkness and does this job automatically. Its light compensation range is 200.000 to 1 without adjust ment and sensitivity is .005 foot candles. In addition the camera has a motorized 10 to 1 zoom lens, pan and tilt controls and can view 360°

The Hoboken Police Department communications control center - where the three 19 -inch monitors are located-is atop the City Hall, located in the heart of the business district Dispatchers in the center communicate with patrol cars and beat officers and now view the conduct of citizens on the downtown streets.

If something catches the dispatcher"s eye. he can use the low-light-level camera to zoom in on a specific area. If it is something that arouses his attention further, he can use the half-inch video tape recorder to make a permanent record of his observations.

The dispatcher can also pan the street, tilt the camera for different angles and record all this if he wants to do so. The camera can also revolve 360°, so it can follow the subject under observation. This camera works effectively without external light, amplifying available light to keep monitor images clear and sharp. It can also see through fog, haze, smoke, rain and snow. The housings for all three cameras are bulletproof and impervious to efforts to blind them with flashing lights.

In the Hohoken Police Department, the electronic "rookie" is already well received. Officers who know they have the support of an irrefutable witness -the CCTV tape recorder-when they take a case to court, are able to move with more assurance in their rounds. Some criminal actions have already been wit nessed as they occurred and in one recent burglary the criminal fled into the range of the CCTV system, neatly depositing himself in the city's jail.

The idea in Hoboken is not to catch more criminals, but rather to discourage criminal activity by con vincing potential lawbreakers that they may be seen on the police department's version of "Candid Camera."

R-E

ALL ABOUT
 TRANSFORMERS

Transformers are the "heart" of modern-day electricity and electronics. Without them, long-distance power transmission and radio and electronic devices would be impractical. Here's how they work.

by FARL JACOB WATERS

TRANSFORMERS ARE FOUND IN MANY KINDS of electronic or electrical apparatus. All transformers, whether the power type on the utility pole or the "shirt-pocket" radio i.f. type, depend upon electromagnefic induction. The reaction to a varying magnetic field, is the development of a voltage or current.

As lines of magnetic force encircle and are "cut" by a conductor, a force (voltage) is developed which causes electrons to move as a current. Inversely, a current through a conductor develops a magnetic field as shown by Fig. 1-a. An alternating current produces a magnetic field that also changes magnitude and direction. As this alternating magnetic field increases and decreases, its lines "cut' that conductor as well

(A)

(B)

FIG. 1-CURRENT IN CONDUCTOR produces a magnetic field (a). Field from ac generates alternating current in adjacent conductor.
as any other conductor that may be close (Fig. I-b). Thus, if a conductor carrying alternating current is near a second conductor, a current will be induced into that second conductor.

Transformers have conductors coiled as shown by Fig. 2. Alternating current

FIG. 2-TRANSFORMER CONDUCTORS are coiled to concentrate field for better magnetic linkage.
through coiled conductor P (the primary) produces a concentrated magnetic field. That magnetic field also surrounds and "cuts" the turns of conductor S the secondary) to induce a current into that winding. The density of the magnetic field is dependent upon the primary current Ip and upon the number of turns within that winding N_{p}. Magnetic density, $\emptyset=N_{p} l_{p}$
This same magnetic density develops the current Is within secondary winding of N_{5} turns.

$$
\begin{aligned}
\text { Magnetic density. } \emptyset & =N_{s} I_{\mathrm{S}} \\
\text { then } \operatorname{Ir} N_{p} & =N_{S} I_{S} \\
\text { and } \operatorname{Ip} / I_{S} & =N_{\mathrm{S}} / \mathbf{N}_{\mathrm{p}}
\end{aligned}
$$

It can also be shown that the primary and secondary voltages. Ep and Es. ate related to the number of turns. Np and Ns .

$$
\begin{gathered}
E_{p} / E_{s}=N_{p} / N_{s} \\
E_{p} I_{p}=E_{s} I_{s}
\end{gathered}
$$

Primary impedance, $Z_{p}=E_{p} / I_{p}$ Secondary impedance. $7_{\mathrm{s}}=\mathrm{F}_{\mathrm{s}} / I_{5}$ and $7_{\mathrm{p}} / 7_{\mathrm{s}}=\left(\mathrm{N}_{\mathrm{p}} / \mathrm{N}_{\mathrm{s}}\right)^{2}$
In common language the above equations become:

1. A transtormer's voltage ratio. Ep/Es. is directly related to its turns ratio. $\mathrm{N}_{\mathrm{p}} / \mathrm{N}_{\mathrm{s}}$
2. A transformer's current ratio. I_{p} / I_{s}, is
inversely related to its turns' ratio. $\mathrm{N}_{\mathrm{p}} / \mathrm{N}_{\mathrm{S}}$
3. A transformer's impedance ratio. $7_{\mathrm{p}} / Z_{\mathrm{s}}$, is directly re ated to the square of its turns' ratio ($\left.\mathrm{N}_{\mathrm{p}} / \mathrm{N}_{\mathrm{s}}\right)^{2}$
4. A transformer's primary volt-ampere product. Eplp. is equal to its secondary volt-ampere product. $\mathrm{E}_{\mathrm{S}} / I_{\mathrm{s}}$.
Therefore, a transformer can be used to change voltage, to change current, or to change impedance.

Losses and limiting factors:

A ransformer consists of two or more windings on a magnetic core (Fig. 3). Transformers used to couple of or i.f. stages require a very low density roagnetic field, and

FIG. 3-CLASSIC TRANSFORMER has two or more colls wound on a common core.

FIG. 4-TOO MUCH PRIMARY CURRENT causes distortion when magnetic core saturates.
are likely to have an air core. Conversely. the power transformer must have a very stong magnetic fieldandan iron core of sufficient cross-section. Each winding must be of sulficient wire size to avoid excessive voltage and pouer loss, or occupying excessive ypace. Iron cores are laminated or powdered to reduce core losses (hysterisis and eddy currents) for an overall efficiency of 90% or hetter.
Figure 4 shows that the magnetic force increases directly with the increase in current between point O and point A. Between points A and B . the magnetic force increases, little with the current increase. In other words. the iron core has acquired a magnetic saturation between A and B. Primary current above this saturation level will not induce additional voltage into the secondary. Transformers used in audio amplifiers often carry de to further limit the saturation level. Audio current exceeding that saturation level will not induce additional voltage into the secondary. Thus, the secondary voltage will not have the same shape as the primary voltage wase-- the secondary woltage wave is distorted.

Transformer uses

The first use for transformers that comes to mind is the changing of voltage. Power companies commonly generate power at a low voltage use transformers to step-up the voltage for transmission, and then stepdown the voltage to a safe level for use in our homes. Within electronic apparatus using transistors. it is necessary to stepdown the supplied 117 volts to a value of less than 50 volts. Tubes often require voltage greater than 117 volts. and step-up transformers are commonly a part of their associated power supply circuits. Filaments or heaters of electron tuhes use lower voltages-5.0. 6.3. 10.0. 12.6-from stepdown transformers.
Figure 5 shows a transformer of a full-

FIG. 5-POWER TRANSFORMER in full-wave rectifier has center tap on secondary winding.
wave rectifier circuit having a center-tap at point A. I his center-tap disides the secondary voltage to two equal vallues, and provides a return path for the de. Push-pullamplifier circuits and discriminators aho we transformers with center-tapped primaries or secondaties.
Transformen ate seldom uned for the changing-atep-up or step-down-of current. However because of the excessive voltage drop and power loss encountered in usual measuring method, power companien often use current tand formers in serien woth the transmission line a , hown by fig. 6 . So-called "rnap-atound" meter use this same principle with the line conductor sersing as the primary. The coupling of transis-
tor amplifier stages by transformers often steps-up the current. but this is the result of impendance matching.
A transformer, with its impedance ratio $(\mathrm{Zp} / \mathrm{Zs})$ equaling the square of its turns* ratio $(\mathrm{Np} / \mathrm{Ns})^{2}$. is a convenient means of changing or transforming impedances. The

FIG. 6-CURRENT TRANSFORMER has 1- or 2-turn primary and is often used for metering.

FIG. 7-AUDIO OUTPUT TRANSFORMER matches tube impedance to that of the speaker.
atrdio amplifier devigned to develop its output across 5.000 ohms may be coupled to a speaker having an impedance of 4.0 ohms hy a transformer having at turns* ratio of 35.2:1. So if the speater in Fig. 7 is across 10 turns of the secondary. its 4.0 ohms will appear across 352 urns of its primary as 5.000 ohms (35.2 $2 \times+$). Impedance transformations, or impedance matching, are often made between

FIG. 8-DIRECT COUPLED OSCILLATOR (a) may not work; transformer coupled circuit (b) minimizes loss of essential feedback.
transistor or tube amplifier stages, between amplifiers and transmission lines, between microphones and amplifiers, between transmission lines of differing impedances, etc.
Power of the automobile engine cannot he directly applied to its wheels, and must he coupled by gear and clutch arrangements. In a like manner, an oscillator circuit directly coupled to its load reduces the power feedback to the input and prevents oscillations. Figure 8 -a shows such an oscillator circuit directly coupled to load RI. while the transformer formed by inductors L_{o} a and L.s serves to couple the circuit of Fig. X-b to its load. The circuit of Fig. 8 -b will oseillate while that of Fig. 8-a probably will not.

F o eliminate some of the interference on power lines and to add a factor of safety isolation. transformersare often used. Bolation transformers with at $1: I$ turns ratio have a non-magnetic (electrostatic) shield between the primary and secondary windings acting as a barrier to electrostatic fluctuations (Fig. 9). Since one side of the secon-

FIG. 9-ELECTROSTATIC (FARADAY) SHIELD prevents coupling through stray capacitance.
dary can be grounded as shoun in Fig. 9. there is the added factor of knowing which side of the power line is at ground potential. holation-1 ype transformers are also used with audio transmission lines to eliminate undersirable noises as well as being a hatrier to direst current.

Transformer ratings

Transformer ratings vary greatly with usage. Power companies une transformers rated in volt-ampere or kilovolt-ampere capacity. Ac circuits commonly have a phase difference between the voltage and the current, and the power consumption is seldom equal to the voltage current (ED) product. Thuss it is essential to rate the power transformer by its maximum voltage-curent product. A 1.000 -watt load with a 30° phase difference and a power factor of $0.86 f$ across a 115 -volt secondary will draw a current of $10.1 \quad 11.000 / 115 x$ (0. 866) ampere and the transformer capacity must be 1.160 wolt-ampere or 1.16 kiluvoltampere. Power tranformers used in electronic equipment are designed for an 80\%/4 power fictor, and the true volt-impere rating is not given.
In addition to the power rating. andio output transformers are also rated with regard to impedance ratio and frequency response. The output transformer has an impedance ratio based upon the speaker impedance at 400 Hz . However, at other frequencies the speaker, impedance differs greatly, and any impedance match is actu-

TABLE 1. AUDIO TRANSFORMERS

TYPES	PRIMARY Z OHMS	SECONDARY Z OHMS	POWER RATING
MICROPHONE OR LINE TO GRID	$\begin{aligned} & 100 \\ & 400 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 70,000 \\ & 195,000 \end{aligned}$	
LINE TO LINE OR VOICE COIL	$\begin{aligned} & 500 / 1000 / \\ & 1500 / 2000 / \\ & 2500 / 3000 \end{aligned}$	$\begin{aligned} & 8 / 16 / 24 / 32 / \\ & 40 / 48 \end{aligned}$	
PLATE TO P-P GRID	$\begin{aligned} & 5000 \\ & 7000 \\ & 10,000 \end{aligned}$	$\begin{aligned} & 4 / 8 / 16 / 250 / \\ & 500 \\ & 20,000 \\ & 4 / 8 / 16 / 500 \\ & 2 / 4 / 8 \\ & 40,000 \\ & 90,000 \\ & \hline \end{aligned}$	
OUTPUT	$\begin{array}{r} \hline 20 \\ 48 \\ \\ 100 \\ 400 \\ 500 \\ \\ 600 \\ 1250 \\ 2500 \end{array}$	8 8/16 3.2/8/16 $3.2 / 8 / 16$ 4/8/16 4/8/16 4/8/16 4/8/16 4/8/16	$\begin{gathered} 10 \\ 5 \\ 10 \\ 10 \\ 0.3 \\ 0.3 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.3 \\ \hline \end{gathered}$
INTERSTAGE	100	$\begin{aligned} & 10 \\ & 1000 \\ & 1500 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.25 \\ & 0.3 \end{aligned}$
	500	$\begin{aligned} & 50 \\ & 500 \\ & 5000 \\ & 50,000 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.3 \\ & 1.0 \\ & 0.15 \end{aligned}$
	5000	$\begin{aligned} & 7500 \\ & 10,000 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.15 \end{aligned}$
	10,000	$\begin{aligned} & 200 \\ & 2000 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.15 \\ & \hline \end{aligned}$
DRIVERS	20	36	1.0
	100	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
	500	200	0.5
	1000	200	0.05

ally a compromise. In turn, the frequency response of the output transformer and epeaker combination is also a compromise uithin reasonatble limits up to 12.000 Hz . As, well ats possible, high-fidelity (hi-fi) equipment make, use of high-frequency feedback and bass-hoost syatems to compensate for the inadeguacies of the transformer-apeaker combination.

Inter-stage atadio transformers transfer little or no power. While inter-stage transformers used in tube circuits made the use of lower supply voltages possible. that advanlage has become insigniticant with transistor circuits. Interstage transformers are rated by their impedance ratios which will be a step-up (5.000: 1.0 meg.) in tube circuits and a step-down ratio (10.000:200) in transistor cireuits

Impedance and turns ratios of i.f. transformers for tube circuits are often not listed by the catalogs. This assumes that i.f. whe
circuits are fairly standardized, but mosi i.f. transformers used in transistor circuits are listed with their impedance ration.

Type of transformers:

Many carly radio receisers used a step-up power transformer to provide 250 to 500 volts for the plate circuits as well as stepdown transformer to supply the heaters. Quite often. these step-up and step-down transtormer were combined with a single primary winding as show by fig. 10. In time, more efficient electron tuhes and citcuits made the voltage step-up unnecessary. and series wiring of heaters eliminated the step-down transformer. However, better television receivers used filament transtormers to prolong tube life. Figure 11 ,hows the hasie combtration of a power or tilament transformer with its windings formed on patste-board. and thin F- and I-shaped pieces of this iron core insulated by a coat-

FIG. 10-POWER TRANSFORMER for tube sets has step-up and step-down secondary

(A) ASSEMBLED

(B) EXPLODED VIEW OF CORE

FIG. 11-POWER AND FILAMENT TRANSFORMER CORES are interteaved " l " and " E " segments.
ing of iron-oxide (rust). Plate supply transformers typically had secondary voltages up to 930 bolts $(465$ volts each side of the center-tap) at 150 mA .. measuring $3 \times 4 \times 3$ inches and weighing nearly 8 pounds.

With transistorized receisers operating on ac, it is necessary to step-down the 117 volts to less than 50 volts. Ficept for transistorized receisers and record players with large audio outputs, the current drain is low, and the power transformer does not need a heay magnetic core Filament and transistor power transformers have ratings of 2.510 80 volts at up to 30 amperes.

Audio frequency transformers used in coupling and impedance matching are similar in construction to power transformers. Howerer. in most cases the carrent and power of addio circuits are small. and the core and windings need not be large. Most coupling and impedance matching audio transtormers are rated by their impedance ratios as shown by Table I. Power ratings are insignificant except for those used as driver and output transformers. Driver stage transformers have power ratings of 0.5 and 1.0 watt while output tansformers may have as moch as 35 -watt capacity. Alohough often not listed, another important factor of audio transformers is the frequency response. Figure 12 shows the typical frequency response al A, a sery poor response
(Cominlled on page 7f)

Guglielmo Marconi

On December 12, 1901, an event took place on a hill overlooking St. John's, Newfoundland, which was destined to have a profound effect on the social, cultural, political, and economic affairs of all people and nations on earth from that day onward. At 12:30 PM on that cold and blustery day, a handsome young man of 27 worked busily at a table on which an unusual collection of electrical equipment was assembled. The build ing in which the apparatus was housed barely sheltered him from the harsh winds that blew outside

The young man held a telephone receiver tightly to his ear, listening intently, his features strained. Suddenly, his expression brightened. He beckoned to his assistant, who had been waiting nearby, and handed him the receiver. "Can you hear anything. Mr. Kemp?" he asked

Kemp took the telephone and pressed it to his ear. He listened for several seconds, then he smiled and nodded affirmatively, handing the receiver back to the young man whose name was Guglielmo Marconi.

Both had heard the three faint clicks in the receiver, Morse Code for the letter "S." The signal which produced the clicks had traveled over 2000 miles without wires, having been sent toward its frigid St. John's, Newfoundland destination from Poldhu, near Land's End, in Cornwall, England. The two men, Marconi and Kemp, heard the signals again at 1:10 and 2:20 PM the same day, and at 1:28 PM the following day, Friday, December 13th.

The announcement, given to the press on December 16, 1901, startled the world. Electrical signals had been sent across the Atlantic Ocean without the use of connecting wires!! The experiment, one of the more significant steps forward in the course of human history, climaxed seven years of work by the Italian scientist. The world would never be the same again

Used with the permission of Charles Scribner's Sons from their forthcoming book FROM SPARK TO SATELLITE by Stanley Leinwoll Copyright 1974 Stanley Leinwoll.

We celebrate the 100th anniversary of the possible. Here is a brief

GUGLIEIMO MARCONI WAS BORN 100 years ago, on April 25. 1874, in Bologna, northern Italy. His father Giuseppe, was an able and well-to-do businessman. His mother, Annie Jameson, was Irish. She had been born in Dublin, the daughter of Andrew Jameson, who operated one of Ireland's largest whiskey distilleries. Annie had come to Italy to study bel canto. There she met, and later married, Giuseppe.

As a child, Guglielmo had few friends. At
the age of five, he went to England with his mother for two years, and his first elementary school education was at a private school in Bedford. For several years thereafter. his education was provided primarily by tutors and by his mother, who taught him in English. He went to school in Florence at age 12, and at 13, attended the Leghorn Technical Institute. In his teens, Marconi attended some of Professor Righi's lectures. Augusto Righi was Italy's leading authority

GUGLIELMO MARCONI in his room in the old Barracks Hospital on Signal Hill, St. Johns, Newfoundland. The receiving equipment he used to detect wireless telegraph signals from Cornwall, England-2200 miles away-is on the table.

HERTZ TRANSMITTER

HERTZ RESONATOR OR RECEIVER

HERTZ TRANSMITTER produced a damped spark chain at the gap as interruptor opened and closed. This induced similar spark chain in receiving loop.
on electromagnetic radiation. The lectures stimulated Marconis interest in electrical phenomenat and by the time he was iwenty he had read extensively on the subject.

The turning point in Marconiss life came when, at the age of 20 he read, while on vacation in the Italian Alps. a paper on the experiments of Heinrich Hertz. Using a battery, an induction coil, a switch, and a pair of metal plates with a spark gap between them, Hertz had produced an electrical dis-

100th ANNIVERSARY

birth of the pioneer who made transatlantic radiotelegraphy chronicle of events leading to the breakthrough

by STANLEY LEINWOLL

charge between the metal plates. The discharge was detected several feet away by a circlet of wire with a small gap in it. When the discharge between the plates occurred, tiny sparks could be observed across the gap in the circlet, indicating that energy had been translemed through space

Although he knew that a theory had been proposed postulating such waves, Marconi

MARCONI'S FIRST TRANSMITTER in Italy in 1895 looked like this replica.
had not been aware that their existence had been proved experimentally. His imagination fired by the article, young Marconi curtailed his vacation and returned to the family s country estate, the Villa Griffone, outside Bologna. Signora Marconi had given her son a room on the third floor of the estate to use as a workshop and laboratory, and it was in this room that Guglielmo Marconi conducted his first experiments using electromagnetic waves as a means of communicating.

He started by duplicating the apparatus used by Hertz. After several failures, Marconi was successful. Guglielmo's early efforts consisted of modifying the Hertzian apparatus in an attempt to produce bigger sparks at greater distances. He had seen the possibilities immediately: Hertzian waves could potentially be used to transmit and receive messages over great distances without
the use of wires!
It was not long betore Marconi was able to produce a spark the full length of his room. This done, it became clear to Marconi that further development would have to lie in two directions: to increase the transmission distance of the sparks. and to make these sparks perform a function - to transmit intelligence in some manner. Young Marconi realized that development along these lines would take capital, and he went to his father for it. The elder Marconi was totally against his son's activities initially, but soon saw the commercial possibilities of his son's "wireless" experiments, and he gave the boy a substantial sum of money with which to continue his work

He started with equipment being used by the others. This included the Hertzian transmitter in the sending circuit, and a receiver which substituted a coherer for Hertz's spark ring. The coherer had been developed by a French physicist, Edouard Branly, who found that if a small glass tube were filled with metal powder, then exposed to electromagnetic waves the metal particles cohere - that is. their resistance dropped, and they were able to conduct electricity. Branly had used iron filings in his coherer. He used a galvanometer, an instrument designed to detect the flow of electric current, to show the coherer was working.

Although Marconi's new equipment worked, the ranges he obtained w ith it were comparable to those being achieved by other researchers in the field-a matter of yards at the most. Discouraged, Marconi turned to other electrical research -attempts to pick electricial discharges from thunderstorms using an elevated antenna. A sudden flash of insight inspired Marconi to combine the elevated antenna of the electrical storm experiments with his wircless equipment.

He mounted a copper plate atop a tall mast. and attached it to one end of his Hertzian transmitter. The other end was connected to a copper plate that was buried in the ground. At the receiver, Matconi erected a similar elevated antenna which was connected to one side of a coherer. The other side led to a metal plate in the ground. These modifications led to dramatic increases in the distance to which he could transmit his wireless signals. The grounded antenna, often referred to as a Marconi antenna, was the young inventor's first original contribution to radio, and for many years afterward, the symbol for wireless was an antenna with one end elevated and the other grounded.

The improvement in range was so marked that Marconi had to move his equipment out of doors to continue his experiments. There, he found that the distance he could transmit a signal varied approximately in proportion
to the length of the vertical wires, as well as the height of the plates above ground. At this point. Marconi's equipment included a telegraph key and relay. which he had introduced in late 1894 and early 1895 experiments: this enabled him to produce long or short trains of sparks. depending on the length of time the key was depressed. In the receiving circuit, Marconi replaced the galvanometer used by Branly with a batteryoperated relay and a Morse inker which recorded the signals being sent. He also introduced a tapper into the coherer circuit. The tapper worked like a hammer in an electric bell. When reception of Hertzian waves caused the coherer's electrical resistance to drop to a low value, an electrical circuit was established between a battery and the tapper. The hammer thereupon gave the coherer a light tap which decohered the metal particles, rendering them nonconducting until another train of waves arrived.

At the time the tapper was introduced. Marconi also introduced an improved coherer. He had found that the Branly tube was too erratic to provide reliable Morse signals, so he devoted considerable time to improving the device. He experimented with $300-400$ different combinations of tilings and metals before evolving a satisfactory coherer which contained nickel and silver. All of these modifications further improved Marconios equipment as a communication device

Each impulse reaching Marconi's receiv-
MARCONI TRANSMITTEF AND RECEIVER

$\mathrm{M}_{1}, \mathrm{M}_{2}$	Metal Plates
S	= Spark Plug
1	= Induction Coil
K	$=$ Morse Kev
B	= Battery
C	= Coherer

GROUNDED TRANSMITTER AND RECEIVER with elevated antenna were the key to greater communications range.
ing equipment produced the same result: the particles cohered. current flowed. the tapper struck the tube containing the particles which decohered, and curtent stopped flowing. Using this device, Marconi was able to transmit dots and dashes on a continuing basis. over a distance of about one mile. He soon discovered that by placing the receiving equipment on the far side of a hill. signals could still be received, indicating that the radiation was either traveling through or over the hill.

In 1895, at the age of 21, the young Marconi offered his invention to the latian Ministry of Posts and Telegraphs, which turned it down because it had no particulat use for it. Marconi was told that his equipment would be more useful to a maritime nation because it seemed to lend itself more to communication between ships or between ship and shore. At that time, the world's most powerful maritime nation was England, and with his mother's friends and influential acquaintances in that country. it seemed a most logical place for him to take his wireless.

Marconi arrived in London in February of 1896 with two trunks containing his wireless equipment. Customs officials were suspicious of the young Italian immigrant, fearful that he was an anarchist and that his mysterious apparatus was a bomb, and they proceeded to dismantle his equipment completely. They were then unable to put it together again because some of it had been damaged in the process. Before he was able to proceed with demonstrations. therefore, Marconi had to make some hasty repairs and reassemble his equipment.

The first man to see the Marconi wireless operate in England was his cousin, Henry Jameson-Davis. an influential businessman in his own right; plans were immediately made to patent Marconi's invention. On June 2. 1896, Marconi applied for a patentthe first of its kind-for his wireless telegraph equipment. By this time, Marconi had already contacted several prominent engineers in Great Britain, among them WidJiam Henry Prece, chief engineer of the British Post Office. Preece had conducted his own research of telegraphy, and had tried to approach wireless by use of induction techniques which were not successful. He was amazed when he learned of Marconi's achievements. Preece, acting as a watchdog for the Post Ottice, keeping an eye on what might turn out to be a lival system to the existing line-conductor internall telegraph message carrying, offered to assist Marconi in any way he could. Marconi was interested in the Post Office because it was potentially a valuable customer. The two, therefore, formed an association of mutual convenience. Marconi demonstrated his equipment to officials of the Post Office and the War Office in July and August, 1896, transmitting signals to distances of several hundred yards. This brought a request for further demonstrations, and the equipment was moved to Salisbury Plain, where successful communication over a distance of one and three quarters miles was established. Subsequent tests extended the distance covered over Salisbury Plain to four miles. and a test across Bristol Channel extended the range of the equipment to eight miles.

Marconi used his wireless in 1898 to report the kingstown Regatta yachting races for the Dublin Express. He followed the
racing yachts in a tug which had been specially equipped with wireless equipment. sending back to shore a running commentary of race positions and developments in Morse code. This marked one of the first times wireless had been used for journalistic purposes.

Queen Victoria was so taken with the Kingstown Regatta reporting that she requested that wireless communication be estatblished between her residence at Osborne House, on the Isle of Wight. and the Prince of Wales. who was recovering from an injury aboard the royal yacht Oshorne. several miles away. Over 100 messages were exchanged between the queen and the prince, and wide newspaper coverage was given these exchanges.

In 1899. the French Government requested that Marconi conduct tests to determine whether communication between England and the European continent was feasible. The rests, carried out over a 30 -mile distance, were a complete success. and were given wide publicity by the many reporters from both countries who wit-
lifetime-international recognition and respect, wealth, a place in history. But the task was just beginning, and his greatest moments still lay ahead. By 1900 , Marconi was experiencing serious competition from foreign sources, particularly from Germany, where Braun, Slaby, and Arco were notable workers. The head start Marconi had gained was being held. but others were close behind, and he needed some innovation that would give him a significant lead.

Frequency selection

One of the biggest problems at that time was co-station interterence. Because control of the frequency at which the wireless equipment functioned was virtually nonexistent, it was a lirequent occurrence to lind that two stations operating in close geographical proximity drowned each other out. There was no way in 1900 , of separating a wanted from an unwanted signal, and since there was no regulation of usage. either geographically or in time. chaotic conditions often arose in which receiving stations could not work efficiently. receiv-

FAN-SHAPED TRANSMITTING ANTENNA used at Poldhu, Cornwall, England to send first transatiantic signals to Signal Hill at St. Johns, Newfoundland. The first-a circular array-came down in a seasonal gale.

MARCONI (extreme left) and assistants launch kite that raised antenna used at Signal Hill, Newfoundland to receive the first wireless signals from across the Atlantic Ocean. Storm made reception very difficult.

nessed them. At last, wireless was beginning to gatin international attention.

In the same year. Marconi came to the United States to conduct a series of tests for the war and navy departments. The American military, satisfied that Marconi's system was the best availatle, adopted it for use by the army and navy. While in the United States. Marconi gained widespread publicity by reporting the results of the America's Cup yacht races off Sandy Hook.

Although press coverage during Marconi's stay in the United States was excellent, and purchases of Marconi's equipment were made by the U.S. Government, the most significant development of Marconi's visit was the formation, in November, 1899, of Marconi Wireless Telegraph Company of America, which. some two decades later. was to become the Radio Corporation of America.

At 25. Guglielmo Marconi had gained what most men fail to achieve in a
ing only a hodge-podge of incoming signals from two or more transmitting stations.

Marconi lirst addressed himself to the problem by improving his antenna systems, and experimenting with different types of coherers. Some improvement was noted, but it was not enough. It was evident to the young Italian genius that limiting the radiation by narrowing the band of frequencies transmitted was the answer

The solution to the problem of interference was found by using tuned, or resonant, circuits. The principle of resonance, called "syntony" by Sir Oliver Lodge, who demonstrated it in 1897. made use of virtually identical antennas, inductances, and capacitances in both the transmitter and receiver. Braun had patented a similar device in 1899. But the systems that I odge and Braun had patented had one serious drawback: very little energy was radiated into space. Two simple yet ingenious innovations by Marconi solved the problem. He coupled the an-
tenna inductively to the transmitter, and made hoth this inductance, as well as the capacitance in the transmitting circuit. variable. These changes enabled him to tune his transmitting circuit to resonance, and the resulting oscillations radiated considerable energy into space.
Marconi then matched his receiving circuits to those at the transmitter, tuning to the frequency being tramsmitted. No longer did his wireless equipment radiate a broad band of frequencies. By using syntonic circuits with variable inductances and capacttances. stations could operate in the same vicinity and, simply by varying the values of the circuit components. could transmit and receive with greatly reduced interference. As soon as he was certain that syntony was the answer, Marconi applied for an all inclusive patent on his system. On April 26. 1900. one of the most important patents ever granted, the famous No . 7777. was issued to Marconi by the United States. The atage for one of the great experiments of the age was rapidly being vet.

Beyond the horizon

Coincident with the work on "syntonic" or tuned circuits. Marconi had become aware of an appatent paradox in connection with his wireless system. He hnew that. according to the well-understood laws governing electromagnetic wave propagation, wireless telegraphy ranges should theoretically never greatly exceed optical distances. This is because radio waves. like light waves. tratel virtually in straght lines. Therefore. hecause of the earth's curvature, they would be expected to leave the surface at at tangent to disappear out into $\frac{\text { pate. While diffrac- }}{}$ tion and refraction effects would increase the range to a little beyond the horizon, no significant extension could theoretically be expected
Scientists of the day were therefore unamimous in declaring that wireless telegraphy communication would be limited to these just-beyond-the-homion diatances. Yet Marconi had found that in practice, he was obtaining ranger which were at least thice those that mathematical calculation indicated. He did not know why thi should be so; he only knew that it was.
Fncouraged by the $6(0)$ - to $10(0)$-mile ranges he was already getting, Marconi decided to gamble by seeing whether the signals could bridge the Atlantic. The audacity of this scheme can be gathered by remembering that all wireless equipment al that time was small and battery-powered, whereas the transatlantic project would demand a huge power plant and antenna whem of a hind of never before tistalized. Marconi proposed to erect tho such stations. one on eath side of the Atlantic, with which he hoped to effect two-way communication and thereby to deal a mortal hlow to the cable companies.
He put his proposal to his board of direetors who were far from enthusiastic. for tremendous expenditures were involved and according to the lext hoohs. the scheme could never succeed. At length. howerer. and with considerable misgivings. the board agreed

When the new was released, many noted scientists scofted. The earth was round. Hertzian wave traveled in straight lines. and the signah would be lost in outer space long before they reathed their dentination. There wat no waly. they vaid. that the exper-
iment could succeed. Matrconi was stubhorn and would not be dissuaded.

To assist him, Marconi engaged the services of an eminent scientist and engineer. J.A. Fleming, who was Professor of Electrical Technology at London University. Fleming. who would later invent the diode dectector, was an expert in the operation of high-power alternating current generators. and was an authority on the work of Maxwell and Herts, as well. He had duplicated Heričs experiments, and followed closely the work of Marconi.

In mid-1900, a site at Poldhu. on a finger of land just east of Land’s End, Comwall. was chosen for the transmitter vite, and construction was begun in Octoher. 1900. the work heing carried out secretly. The size of the Poldhu station wats massive. In place of previously used battery power supplies, a 32-horsepower generator was installed to drive a 25 -kilowath alternator. whone output Ha, 2000 volts. This voltage was stepped up to 20.000 volts by a transformer.

The antenna system at Poldhu consisted of 20 wooden masts, each 200 feet high. erected in a circle. Circumferentiod support was provided by horizontal triatics betueen each mast, and the guy wires anchoring the

FIRST TRANSMITTING ANTENNA at Poldhu a circular array - was blown down in gale.
masts were broken up and held together with lanyards. From an engineering standpoint. the horizontal support arrangement left much to be desired, becaluse it meant that if one mast were to fitl. it would in all probatility carry the others down with it. The devigners were atware of this wortcoming. but decided the gamble was justitied. in view of the relatively low losses the system would have from leahage current. I hey would need every hit of power possible.

By March. 1901, the Poldhu station was nearly ready, and Marconi, satisfied that things were going well there, sailed with an assistant for the linited States. An oceanfront site at South Welfleet, Cape Cod, Massachussetts was chosen, and Marconi left the construction of the receiving equipment and the receiving antenna system. which was identical to that at Poldhus to an ansistant, and he returned to Fngland.

Preliminary tests conducted in the fall of 1901 from Poldhu to Crookhaven, on the West codat of lreland. were succesuful. The distance between these points was 235 miles. well beyond the 186 -mile record established from Poldhu several week before. and indicated once again that the Hertzian waves were not tratseling tangent to the curvature of the eath. Since no other possibit-
ity was conceived of at the time, it was generally supposed by Marconi and his associates that the signals were traveling along the surfice of the earth.

During the period of these preliminary tests, construction of the Cape Cod station continued while the finishing touches were being put to the Poldhu station. Then, in close succession, a double disaster struck. In September, the worst fears of the antenna designers were realized when a severe gale struck the west coast of England, and the antenna system at Poldhu was totally destroyed. with all 20 masts collapsing, leaving a mountain of twisted debris.

Matrconi hould not he deterred. He immediately ordered the wreckage to be cleared. and an alternate temporary antenna system erected. It consisted of 54 copper elements arranged in a fan shape, and mounted between twe 150 -foot wooden masts. Within the month. the site had been cleared, and the second array under test. While the tests on the temporary antennat were being conducted, plans were made to substitute a more powerful, permanent antenna. But the test with the temporary system was going so well that Marconi decided not to wait. but to use the alternative instead. Then, just as Marconi was ready to start his transatlantic tests, the second disaster. identical to the first, befell the Cape Cod antenna. In November, 1901, it collapsed in shambles during a northeastern storm. It seemed that fate was conspiring against the inventor.

Marconi decided that he could not wait for the reconstruction of the stateside system. Instead, he and two associates, George S. Kemp and P.W. Paget, set sail for the point of nearest landfall in the Americas-Newfoundland. They carried with them an assortment of wireless equipment, including different receivers and coherers, and antenna accessories, including large canvas kites, balloons, and varying lengths and thichnesses of wire.

Marconi and his associates landed at St. John's on December 6. 1901. and met with Sir Cavendish Boyle, the governor of Newfoundland. and Sir Robert Bond, the Prime Minister. both of whom promised Marconi all possible assistance. They made available to the party an abandoned barracks hospital which lay on a hill some 600 feet above St. John`s harbor, facing Poldhu. The location, now citled Signal Hill. was not far from where John Cabot, the discoverer of Newfoundland, tirst landed.

S...S...S... S...

By December 9th, Marconi and his assistants had assembled their equipment in a ground thoor room of the hospital, and Marconi sent a catble to Poldhu instructing the technicians there to start transmission of test signals on December llth. They were 10 vend S s-three dots in the Morse code continuously between the hours of II AM and $3 P M 1$ Newfoundland time. The choice of the letter S was made for several reasons. The switching arrangments at Poldhu were not constructed to withstand long periods of operation without considerable wear and tear on the equipment. This was especially so if dashes were to be sent. Furthermore, an automatic transmitting device could be employed if S s were sent. Finally, Marconi felt that three dots would probably be heard (comimued on page 80)

FEMTOWATTHere It Comes

> The standards used to rate the performance of FM tuners and receivers have been varied and only loosely followed. A new standard proposed by EIA/IHF meets the needs of today's technology.

by LEN FELDMAN

THE ELECTRONIC induStries assoctation (EIA) and the Institute of High Fidelity (HHF) recently held a joint engineering meeting to try to come up with one national (and hopefully. perhaps international) standard for measuring the performance of FM tuners and receivers. Ever since 1958. when the first lHF Tuner Measurement Standards were issued, the hi-fi component manufacturing segment of the audio industry has. for the most part. tried to specify product performance using these measurement standards. Mass-market manufacturers. such as makers of console "package" radio-phonographs and table model FM sets have either used specific portions of the IHF standards. sections of the older (1947 and 1949) IRE FM measurement standards (now the IEEE), or have come up with measurement standards of their own to suit the ir advertising requirements.

Admittedly, even the IHF standards of 1958 are sadly out of date. For one thing, they make no mention of stereo FM performance or related measurements. since in 1958. stereo FM was still three years away. New drafts of measurement standards developed separately by both the IHF standards committee and the EIA sought to update and clarify FM performance measurements in the light of presentday technology and knowledge.

Undoubtedly. the final approved version or versions will take proper account of such important parameters as stereo separation, stereo sígnal-tonoise ratio (which is always poorer than the S / N realized in monophonic performance) and stereo harmonic distortion. SCA and $38-\mathrm{kHz}$ carrier product rejection will also appear in the new standards. along with more wideranging intermodulation and harmonic distortion measurements in general -all intended to more clearly spell out the relative merits (or demerits) of an FM receiver product so that its performance can be meaningfully and
completely compared with competitive products being shopped by the knowledgeable audiophile. Details of the se new measurement requirements will be reported on here as the new standards near finalization and issuance. Our purpose this time. however, is to analyze a much more fundamental concept which came under investigation at the joint EIA-IHF meeting-and that has to do with they way in which we measure signal input levels to receivers-be they FM. AM. TV. or other communications types.
to only 3.3×10^{-13} watts, or $1 / 4$ the previous power. Looking at it another way, if a manufacturer rates his FM tuner as having a sensitivity of $2.0 \mathrm{mi}-$ crovolts (referencing a 300 -ohm input impedance). another manufacturer might well rate a similar product as having a 1 microvolt sensitivitv if he refers his sensitivity to a 75 ohm input impedance, since $(2.0$ $\left.\times 10^{-6}\right)^{2} / 300=\left(1.0 \times 10^{-6}\right)^{2} / 75=1.33$ $\times 10^{-14}$ watts. Few manufacturers of true hi-fï components play this game any more. but the possibility of this

FIG. 1-VOLTAGE RELATIONSHIPS using an FM signal generator matched for use with a receiver having an antenna input impedance of $\mathbf{3 0 0}$ ohms, balanced.

Microvolts vs power

Even though it is intuitively recognized by engineers and technicians alike that a signal induced in the antenna of any communications receiver involves a transfer of power to the antenna terminals, some segments of the industry (notably, in the consumer FM and AM receiver field) have traditionally dealt with signal inputs in terms of voltage or, more specifically. microvolts. Obviously, we can easily translate microvolts appearing across a given impedance into microwatts of power. For example, 10 microvolts appearing across an input impedance of 75 ohms may be expressed as 1.3 micro-microwatts $\left(1.3 \times 10^{-12}\right.$ watts $)$ since power. $\mathrm{P}=\mathrm{e}^{2} / \mathrm{R}$. However, the same 10 microvolts appearing across a 300 -ohm input impedance is equivalent
abuse does exist. and either statement would be true if the manufacturer bothers to reference the impedance being used in the calculation.

"Hard" and "Easy" microvolts

Continuing to use microvolts rather than power as a reference input signal for tuner or receiver measurements leads to other possible points of confusion. The available power from a typical signal generator (used to measure FM performance) having a source voltage E quivalent to the induced antenna voltage) and an internal source resistance of R (equivalent to the antenna resistance) is the power which would be delivered to a matched load (the receiver input terminals). It is equal to $E^{2} / 4 R$. where E is the opencircuit voltage and R is the generator

FIG. 2-NOMOGRAPH for translating microvolt signal-level standards to the $d B f$ available-signal-power rating system.
resistance. The terminated voltage is the voltage delivered to the matched load, and is therefore equal to one-half the open-circuit voltage.

In the diagram of Fig. 1, the generator produces a voltage 2 E , internally, and has a 50 -ohm source resistance. Most generators are calibrated directly in terms of available power level-that is the power available to a matched load, so that they are direct reading in available power (or signal). Thus, in Fig. 1, the microvolts indicated on the generator's own internal volimeter would be "E" rather than 2 E . The resistors shown in the dummy antenna configuration serve to terminate the output of the generator, and present a "looking back" impedance of 300 ohms required by the 300 -ohm antenna terminas of the receiver under test.

Using this kind of dummy antenna and working according to present 1 HF standards, a technician would consider the signal intensity applied to the receiver to be $E / 2$, rather than the true open-circuit voltage of E. Thus, if the generator meter's reading was 5 microvolts, he would divide this figure by 2 , and say that the receiver had only 2.5 microvolts applied. The reasoning, of course, is that half of the internally available " 2 E " voltage is voltage divided between the internal 50 -ohms impedance and the external matching
network. A second voltage division takes place between the voltage availabie across the 52 -ohm resistor and the combination of series resistors and the internal impedance of the receiver (which is presumed to be exactly 300 ohms). Bear in mind that the generator's meter already takes into account the first match, and is calibrated to read " E " and not " $2 E$."

This procedure has been labelled as the "soft," "easy," or terminated microvolts approach. Alternatively, "hard" microvolts are used by some to measure receivers, in which the number of microvolts would be the open-circuit microvolts (in this case " E "), or exactly the number of microvolts read by the generator's own meter-without the "divide by two" factor. Thus, if the meter reading is "5 microvolts," one faction might term
sensitivity as $5 \mu \mathrm{~V}$. while those who subscribe to the well-established IHF procedure would designate the same receiver's sensitivity as $2.5 \mu \mathrm{~V}$

Enter the femtowatt

The joint IHF-EIA committee has suggested that henceforth all input signal levels should be expressed in terms of available power, to avoid confusion over whether receiver sensitivity expressed in microvolts is in "open-circuit" or "terminated" microvolts. In addition to resolving the $6-\mathrm{dB}$ ambiguity of "hard" vs "easy" microvolts. expression of receiver input levels in available power has been accepted for many years as being the more fundamental measure of receiver input level. It would be particularly advantageous when comparing measurements in receivers designed for different source impedances (as, for example, 75 -ohm coaxial lines or 300 -ohm lines).

To make the scale a convenient one, the reference level that has been selected is one femtowatl $\left(1 \times 10^{-15}\right.$ watt). 0 dBf , using this reference, works out to an open-circuit voltage of approximately 1.1 microvolt, and +120 dBf corresponds to 1.1 volt, both referred to a 300 -ohm impedance level. The nomograph of Fig. 2, along with the accompanying notes, will enable the reader to translate any relationship between available power, open-circuit microvolts, and terminated microvolts at both the 300 -ohm and the 75 -ohm impedance levels. Typical sensitivity figures for today's state-of-the-art component tuners and receivers might be expected to fall at around 10 dBf . using this system. As can be seen from Fig. 2, this would correspond to an open-circuit voltage of $3.4 \mu \mathrm{~V}$ at 300 ohms, or a terminated voltage (similar to that used in the present IHF specs) of $1.7 \mu \mathrm{~V}$

Calibration of generators

Some FM generators are already calibrated in some form of decibel scale, but this should not be confused with the new femtowatt $0-\mathrm{dB}$ reference. For example, one well-known generator is calibrated with a dB scale in which 0 dB is I volt, and a change of 20 dB corresponds to a 10 to 1 change in

FIG. 3-DUMMY ANTENNA for matching signal generator to unbalanced 300 -ohm antennainputs on FM tuners and receivers. The dummy antenna should be shielded to avoid stray pickup.
voltage. This scale would show a $100(0-\mu \mathrm{V}$ signal as -60$) \mathrm{dB}$ (the minus sign is in fact omitted on the actual scale). Still other generators have adopted a reference of $0 \mathrm{~dB}=1 \mu \mathrm{~V}$ while others choose the $0-\mathrm{dB}$ point as
is direct reading in available power conce the new scale has been designed and aflixed to the generator). If resistive pads are used for making the impedance match, the loss in available power would have to be subtracted

FIG. 4-THE DUMMY ANTENNA presents the signal generator and receiver or tuner under test with a resistance approximating their respective output and input impedances.

FIG. 5-TWO-GENERATOR SETUP like this is required the old and the proposed standards when measuring selectivity and capture ratio of a tuner with a 300 -ohm balanced input.
$1000 \mu \mathrm{~V}$. or 1 mV . Measurements using this reference generally speat of "so many dBmV ." None of the above scales corresponds to the one now being suggested by IHF-EIA and it will be necessary to affix a proper scale to your existing FM generator scale if the new system is adopted.

Once this is done. however, the scale will apply for all receiver measurements. and you will simply have 10 allow for the power loss of the dummy antenna used.

A dummy antenna consists of a network which presents to the receiver the source impedance for which that receiver was designed. The standard $3\left({ }^{(0)}\right.$-ohm dummy antenna presents a batanced $3(0)$-ohm source impedance. Since provision for a 75 -ohm balanced or unbalanced input is frequently provided on some tuners or receivers. appropriate dummy antennas will have to be used in such cases. The ideal dummy antenna is loss-free and transforms the generator impedance directly to 300 ohms or 75 ohms. When such a dummy antenna is used, the generator

- OPEN CIRCUIT INPUT TOSET $=\frac{E_{1}}{2}+\frac{E_{2}}{2}$

AVAILABLE POWER LOSS $=13.8 \mathrm{~dB}$
FIG, 6-TYPICAL MATCHING NETWORK used between two FM generators and a tuner or receiver with a 75 -ohm unbalanced antenna circuit.
from the generator rading to find the power available to the receiver. A few examples of dummy antennas for various configurations, together with corresponding available power loss, are shown in Figs. 1, 3, 4, 5, and 6. The latter two are required in making measurements such as capture ratio and selectivity, in which the use of two FM generators is required both in the old and newly suggested standards.

Standard input levels

Many of the presently required standard measurements made on FM tuners and receivers (such as distortion. separation, signal-to-noise, etc.), in accordance with exisiting IHF measurement standards. require standard input signal levels of $1000 \mu v$ or 1 mV . It has been suggested that the new standard mean level for these measurements be done at an available power level of 60 dBf. As can be seen from the nomograph of Fig. 2, th is would correspond to an open-circuit input voltage of about 1100 microvolts (referred to a 300 -ohm impedance level). For just about any tuner or receiver we can think of, this slight change in signal level would not materially affect measured results previously made at the $1000-\mu \mathrm{V}$ level, and the ligure of " 60 dBf " is a convenient and easily rememberer one. Similarly, for those measurements (such as caplure latio and AM suppression) that were previously required to be made at a signal level of 100 microvolts, a power level of 40 dBf would be subst ituted, corresponding to about $100 \mu \mathrm{~V}$ for 300 -ohm impedance levels. This minor change. too. Would not be expected to materially affect readings and performance ratings.

As of this writing. at final draft of the new combined FM measurement standards is being prepared. As noted, the new standard is far more comprehensive in scope than anything previously attempted with respect to FM performance measurements. As approval becomes imminent, we will report on some of the specilics and on some of the new parameters that IHF members will have to report in their published specifications. In the meanwhile, the femtowatt, or power concept of signal input. May take a bit of getting used to on the part of engineers and technicians who have become accustomed to less meaningful signal level references. but once adopted, the system should prove simple, unambiguous and easy to use. Alter all, were all going to have to get used to the metric system hefore long. too - simply because it makes more sense than the system of measurement will be replacing.

R-E

WHAT IS A FEMTO?

Femto is a prefix meaning 10^{-15}. The proper symbol denoting femto is a lowercase f. Be careful not to confuse it with F for Farad.

Liquid-Crystal Clock

Build it from a kit for \$89.95. It runs on one set of pen light batteries for a year. Crystal oscillator makes it accurate.

WE FIRST BROACHED THE IDEA OF A practical IC digital clock using low-power CMOS IC's driving a liquid-crystal digital readout in RadioElectronics, one year ago, in the April 1973 issue. At that time we presented a construction article on just such a clock. Unfortunately, both the IC's and the readout were hard to come by. and their prices were staggering. Anyone building the clock now has one of the most expensive digital clocks our readers ever built.

Now, just one year later, we are pleased to report on a new liquidcrystal clock kit, that is very similar to the clock project we presented. It's the RCA model KC-4014 and will be available from RCA distributors across the United States for $\$ 89.95$.

This is a complete kit with all parts and construction details. IC's. liquid crystal display, two-sided circuit board, case, oscillator crystal, even the hatteries are included.

An interesting clock

The liquid-crystal display provides a 4 -digit readout that tells the hour and minute. The colon between the hours
and minutes blinks off the seconds. There are 18 CMOS IC's mounted on one side of a two-sided circuit board that has plated-through holes. The readout plugs into a special set of contacts that the builder solders to the board.

All parts except for the three timesetting switches mount directly on the circuit board. The switches are attached to the rear of the clock case and connected with ordinary hookup wire
to the circuit board.
The oscillator crystal is in a minuature TO-8 type case. There is one special feature of this device that deserves speciad notice. When you take a close look at it you'll see that the top of the erystal case is transparent. This is done because the crystal is trimmed to its precise frequency after it is in its case. It's done with a laser.

The tiquid crystat display is highly visible, as you can see in the photos

LOOKING FROM the rear you can see the three time-set switches and the crystal oscillator frequency adjustment.

COMPLETE SCHEMATIC OF THE CLOCK. CMOS IC's and liquid Crystal re adout combine to make this completely poriable unit that requires no ac hookup.

RFADOUT-KD-2133
OSCILLATOR CRYSTAL-KD2141
List of RCA disitributors who have this clock kit will be publisized by RCA next month.
and on this month's cover. This is true even when light levels are low. The reflective type display. with the hack plate and black felt in front of it provides maximum visibility

Why batteries?

Battery operation makes this clock completely portable and independent of the ac line. As a result you can use it anywhere, indoors or out. Battery powered digital clocks have been built before, but the major problem has always heen the life of the battery. Normally, hetween the current drain of the IC's and the power required by the display, batteries will only last for a relatively short time. Some battery powered clocks are set up so the time display is turned on only when you want it. to conserve power.

In this clock we see only CMOS IC's. They, in conjunction with the liquid-crystal display (another powersaving (levice) make it possible. For more information on CMOS IC's see the article "CMOS-Why is it So Good" by Don Lancaster in the December 1973 issue of Radio-Electronics.

If you are looking for full circuit operation of this clock we suggest you take a look a1 the April 1973 issue where we presented the original story "Battery-Powered IC Digital Clock" by Steve Lecherts.

R-E Puts it all together

Assembling the kit is a snap. The parts plug into the board and are soldered into place. Since the board has plated through holes you only have to solder on one side.
The one thing we did notice is that this is not a quick 1-2-3 assembly job. There are 19 IC's and that means an awful lot of soldered connections that must be made. The biggest problem we had was making sure that we didn't create solder bridges between the IC connections. We do suggest that when you build your clock you double check each time you complete soldering one set of IC connectors. A solder aid brush and a hot iron are all you need to cure this potential problem.

It is vital that you use a small iron -one with small tip size that is. A $1 / 16$-inch tip is evcellent for the job. But except for this one caution, normal printed circuit assembly techniques will see you through.

After you`ve got all the parts on the boatd the batteries are plugged into place and the board fastened down over them. There's more than enough clearance. hut make sure you trim all leads projecting from the hottom of the circuit hoard to a old shorts.

With the circuit board in place the cover is fitted in place over the top and fastened down. Now it's just a matter of setting the cloch to the proper time.

WITH THE TOP COVER REMOVED you can see all the inner workings. Digital readout plugs into the circuit board. It is a reflective liquid crystal display.

TEN PEN LIGHT CELLS IN BATTERY CLIPS, located under the circuit board, power this clock. As battery replacement is not frequent compact stacking is practical.

This is done using the three rear-panel switches.

If you find your assembled clock is not keeping precise time, you will have to adjust the oscillator frequency with the adjustment capacitor. This can be done with or without equipment. With a frequency counter you simply set the oscillator up to provide the exact frequency specitied in the instructions. Using a communications receiver
tuned to WWV. you can adjust the oscillator preciselly in amatterof minttes. Without equipment you simply adjust the oscillator capacitor and wait a few hours to indge the result.

We tried setting up the clock without the counter and found that it took about four days to get the adjustment on the nose. Since then we ve had the clock operating for about three months and find no significant drift.

Infrared radiation is widely used in security countermeasures and in scientific, military and industrial applications. You can get to know what it's all about with this simple IR detector

by FORREST MIMS

THE IR FINDER IS A SENSITIVE, VERsatile infrared detection system that can be assembled in less than an hour. once the necessary parts have been collected. A variety of infrared detectors can be used with the unit. The completed instrument has many experimental and practical applications

The heart of the IR Finder is a simple 2-transistor oscillator whose frequency is varied by an infrared sensitive photoconductive cell or thermistor. Infrared rays falling on the detector alters its resistance. changing the oscillator`s output frequency. Normally, the output of the system is a low-frequency buzz. But when the unit is pointed toward a source of infrared. a high-pitched tone is heard.

The prototype IR Finder was instatled in a small plastic flashlight ciase for convenience, and to take advantage of a built-in parabolic retlector. Using a parabola to collect the infrared is important for two reasons. First. it focuses more radiation on the detector. Second, a reflector is more efficient than a lens, since most kinds of glass absorb infrared. In essence, the reflector is to the detector what an antenna is to a radio.

While the flashlight I used is availat ble from many distributors for about $\$ 1.20$, the $1 R$ Finder can easily be installed in any convenient container. If you are using a llashlight case like the one in the photographs, hegin construction by opening the flashlight and removing the battery contact from the top side of the back of the case. This makes room for a miniature phone jack. Leave the two battery contacts on the lower side of the case in place, as the unit's power supply cell will he inserted in this space later. Install the phone jack by carefully drilling a $1 / 4$-inch hole in the rear of the case in the space formerly occupied by the hattery clip.

Following the parts layout in the
photo, assemble the oscillator circuit. Solder the leads directly to one another to form a self-supporting structure. There are only three components to install. so a conventional circuit board is not necessary. Use insulation, if neces-

UNMODIFIED PHONE JACK:

J1. MODIFIED SO THAT INSERTING PHONE CONNECTS BATTERY AND ACTIVATES UNIT.
MODIFIED PHONE JACK:

(NORMALLY OPEN)

CIRCUIT OF THE INFRARED DETECTOR

PARTS LIST
B1 - 1.5-volt AA cell
C1 - $0.022 \mu \mathrm{~F}$
J1 - miniature phone jack
Q1 - 2N2925 or equivalent
Q2 - 2N2953 or equivalent
IR1 - Infrared detector (see text)

[^2]Sary, to prevent leads from shorting. Do not trim excess lead lengths from the components at this point.

When the components are soldered together, solder 2 -inch lengths of hookup wire to the appropriate leads of Ql and $Q 2$ so they will reach the phone jack and detector contact. Then trim all excess lead lengths except from $C 1$. Bend the leads of Cl as shown in the photo, and insert them in the appropriate spaces in the flashlight switch and phone jack. It isn t necessary to solder the two leads inserted into the contact holes as the friction should be great enough for a good electrical contact. Complete the electrical assembly by soldering the leads connected to the negative battery terminal and phone jack.

The IR Finder is completed by installing a detector. The prototype uses a small lead sulfide (PbS) cell purchased from Radio Shack as part of an infrared detector package. The cell sensitive to a range of wavelengths extending from about 1 to 3 microns at room temperature. Other detectors can be used as well-so long as their resistance varies with temperature or infrared. For example, a thermistor with a room temperature resistance that falls somewhere between 10,000 and $1(x), 000$ ohms can be used, but its response time will be much slower than the PbS cell. For near-lR detection at about 0.75 microns, an inexpensive cadmium selenide (C dSe) detector such as the Clatex CL603, CL703, or CI.903 can be used.

The parabolic reflector of the plastic llashlight makes for a convenient detector installation. Remove the PR-4 lamp from the holder, and carefully break and remove the glass bulb. Be sure to protect your eyes from flying glass. A good technique is to wrap the bulb in several layers of tissue, and crack it with gentle pressure from a pair of pliers.

R TV

Build it yourself... the perfect way to learn all about the exciting field of digital electronics!

It's part of a complete at-home program!

Imagine spending your spare time actually building your own 25 -inch diagonal digital color TV! It's a project you can work on right in your home. You'll enjoy the challenge . . exploring the new systems of digital circuitry and performing experiments to test what you learn.

There's no travelling to classes, no lectures to attend, and you don't have to give up your job or paycheck just because you want to get ahead. When you finish this new Bell \& Howell Schools program, you'll have the skills you need plus a great color TV to keep and enjoy for years!

Digital electronics is changing our lives!

There's a lot more to digital electronics than just the numbers! True, that's what you see on more and more products like digital calculators, clocks and watches. But behind the numbers lies a fantastic technology that's creating higher standards of accuracy and dependability. The versatility of digital electronics has begun another industrial revolution. Its growth and applications are giving us new and better ways of doing things and spectacular products like this new Bell \& Howell digital color TV!

You need no prior electronics

 background!We start you off with the basics. You'll receive a special Lab Starter Kit with your first lesson so that you can get immediate "hands on" experience to help you better understand newlylearned electronics principles. Later, you'll use your new knowledge and learn valuable skills as you build the digital color TV. You can take advantage of our toll-free phone-in assistance service throughout the program and also our in person "help sessions" held

Step-by-step TV Troubleshooters Guide

A TV set with multiple troubles can be a "dog" if you don't use the right approach. Let's look a simultaneous sync, agc and color ills.

by STAN PRENTISS

JUST IN CASE YOU VE FORGOTIEN. there are still some vacuum-lube color TV's around, and there will be some for at least another ten years. But the newer ones have the ir tubes and transformers. deflection and convergence assemblies mounted just a little closer together, and circuit board components buried a little further underneath. So with boards that don't unplug. hot tubes, and less working space, servicing these hybrid or all-tube receivers can become a chore. But the right tools and a considered approach can overcome many handicaps.

For instance, a "friend" brought in a 1967 RCA CTC22 (Fig. 1) that had the usual "minor" troubles such as no horizontal and vertical sync. age that would cut off but not saturate, no
color. and a brightness control whose rotation had positively no effect. He swore all tubes had been checked, de voltages were grod, and that just a little "twiddling" would lurn the beast into a winner. I agreed that certainly something could be done. But instead of using a voltmeter, we put in a tube mount following the video detector. and scoped the first video amplifier and the sync, age, and chroma driver V203. We found hoth a cathodeshorted 5GH8A and no output. The tube was replaced but apparently damage had been doubly done, for the same troubles continued, and we still could not control sync or luminance. or produce color.

The approach

such a situation is to begin pulling lubes, probing with voltmeters, and otherwise aimlessly killing time. What needs doing is 10 find the problem circuit as quick as possible. then select stage and components for checks in the likely area. The easiest way. of course, is with a well-calibrated de oscilloscope, preferably with accurate, stable. triggered sweep. And the lirst point to look at is TP201, just following the video detector. Here you can determine if the signal has normal amplitude-that is has approximately a ratio of 30 percent for sync pulses and 70 percent for video (fully modu-lated-and whether there is clipping, smear (high-frequency information where it shoukn't be). ripple (lowfrequency sinewave-type interference

FIG. 1-RCA CTC22 LUMINANCE AND CHROMA SUBSYSTEMS. The trouble was due to a shorted
V203B (sync, age, and chroma driver).
weave, usually from the power supply), or sync compression, which ordinarily means age problems.

In the YIWI tace (Fig. 2). you can see none of these, even at the grid of the sync, age, and chroma driver V 203 B , although the dic level is more than 3 volts negative, while the schematic shows only 0.3 volts positive. (But th is voltage is probably static and taken without incoming signal.) C239, R235. and R239 probably generate some self bias; so. we ll pass this negative sitlation by for the time being. In the plate circuit of V203B , however, with its $10-\mathrm{K}, 3-\mathrm{W}$ load resistor, no video shows (Y2WI, Fig. 1), but the 100 -volt-per-division de has risen to 280 volts. the value of the receiver's do prime power supply. With no ripple, adequate value, and steady state, there is obviously nothing wrong with $\mathrm{B}+$ Nonetheless. the V203B tube is not conducting.

Evaluation

Like any careful technician would, let's see what the screen grid, its divider, and bypass capacitor have to offer. RCA's de readings say it should be between 90 and 120 volts. And here you read (on your dc scope) O volts! Do you jump on this right away? Not by a long shot! What's the voltage at the plate of V203A? It turns out to be 165. This indicates immediately that the pin 31 -watt screen divider is probably open, since the 140 -volt supply is less loaded, and therefore has risen 20 percent.

Before we move too fast, though.remember that brightness is frozen, age offers short range. and syne remains poor. If R 243 is actually open, would one resistor cure all these problems? Chroma, sync, and age would certainly benefit, but the brightness control is nothing more than a negative de bias for the grid of the second video amplifier, derived by diode rectification from the heater of the $V 706$ video amplifier, and may not respond unless the video level itself changes radically when the sync, agc. and chroma driver fault is repaired. At any rate. let's see

And remember that not one portion of the receiver has yet been disturbed except for the exchange of a single tube-the 5GH8A-for a new one, to see if sync and chroma would return to normal. The tube mount and new tube remain in place.

So the next step is to remove both tube and mount, and look around. The first thing we see is a $1-$ watt resistor burned to a crisp, located "conveniently" as always, just under the large video detector and third i.f. transformer shielding. Another $1 / 2$-watt resistor alongside is little more than gray carbon ash. A look at the ir positions on the PW200 board reveals they are the R243 screen bypass and R241, the

FIG. 2-V203B, SIGNAL IN AND OUT.

FIG. 4-FIRST VECTORSCOPE PATTERN.
other portion of the series divider to the 140-volt bus. Obviously this is the seat of the problem, and both require replacing. A cathode short can do remarkable damage.

The repair

Since complete chassis removal is not easy, bottom and top retaining screws can be backed out, and a little discreet prying will uncover the upper right and center subsection. Then, if the leads of the damaged resistors are clipped close to the ir bodies. a certain amount of solder-coated copper lead remains. A hot soldering iron and a pair of long-nose pliers can now be used on the component side of the board to push the cut leads through far enough to be identified. Then. tinned and shortened replacement resistor leads inserted in the pe boad can now be easily located on the board's circuit side and soldered securely in place. The "pry" is then removed. safety insulation (hot chassis) checked, the tuner-to-chassis ground resoldered, and the usual dozen screws replaced.
But how about the $1,000-\mathrm{pF}$ bypass capacitor that shunts R243-do you have to haul that out and check it too? Not at all! With your new 5GH8A sitting in the tube mount, simply put the dc oscilloscope to pin 3, and see what happens. If you have at least between 90 and 120 volts, there is no further problem at this terminal unless you see

FIG. 3-GRID AND PLATE SIGNALS ON V203B after burned resistors were replaced.

FIG. 5-PATTERN AFTER ADJUSTMENT.
excessive signal. A $0.001-\mu \mathrm{F}$ capacitor isn't going to remove all vileo here, so a modest remnatot is all right.

The resulting waveforms for grid and plate of V 203 B now appear in Fig. 3 (W2). The Y/W2 top is ? volts per division, and the Y2W? bottom is 100 V/div. The only possible fault that can now be found might be the amplitude of the sync pulse portion of Y 2 W 2 . However, both vertical and horizontal sweeps are steady, and there is no reason to believe there are further problems, at least in this stage. Further, age will now swing from saturation to cut off, and remove all picture information at either end.
The color portion, however, does take a few extra moments to merge from something nearly purple to normal flesh tones. Since there's no width problem, this often means slow warmup of the picture tube or a second set of 5GH8A RGB-Y amplifiers. With a new set installed, the receiver turned on properly. color appeared and remained in satisfactory phase and amplitude, and focus plus overall luminance seemed ample. There was one other consideration, however Are the chroma circuits aligned?

Using a vectorscope

In modestly priced tube receivers such as this one, burst transormers firing ringing-crystals are often used to excite either a $3,58-\mathrm{MHz}$ subcarrier

amplifier or uscillanor, with the tint function simply an RC control about the oscillator itself. Now, if the tint potentiometer will turn flesh tones from natural to green at one extremity of rotation and to lavander at the other, you have the usual 30-degree plus swing on either side of control mechanicalcenter, and nothing further need be done. If an adjustmert is necessary, set the tint control at center. and twiddle the burst transformer for flesh tones while the receiver is on the uir. The T703 $3.58-\mathrm{MHz}$ output transformer seldom. if ever, needs adjustment, and then only for an ac-dc null. In this case, with only one bandpass transformer. all that needs tender adjustments are chroma take-off coil L701 and double-tuned bandpass transformer T701
But we must use an oscilloscope/vectorscope that won't load the high-impedance tube outputs, and a color bar generator that hasn't got "crawlies." color bars that run up and down. or broad striped bars instead of narrow, clean ones. Here we used a new Sencore Color King IV and a Telequipment (Tektronix) D 66 with $\mathrm{Y}-\mathrm{Y}$ instead of $\mathrm{X}-\mathrm{Y}$ inputs so that both Y channels are phase-matched and have identical and adjustable gains, plus the same $1(0$-meghom impedance when used with the usual 10X lowcapacitance probes. Further, since th is receiver is an $R-Y$ and $B-Y$ system. with luminance and chroma matrix in the picture tube, no removal of luminance information is necessary, as in RGB receivers where both luminance and chroma go to the cathodes of the picture tube already mixed.

Our initial pattern on a chamel 3 input appears as in W3 (Fig. 4). The objective of the entire procedure is to get relatively symmetrical. straightsided petals out of the pattern with absoluty no crassorers. Initially, be positive your fine tuning places the magenta fourth bar from the left-the tiirst color bar is usually hidden -exactly on target with tint control at mechanical center. Then go to chroma take off 1701 and T701. and twiddle these two for best pattern.

If the initial pattern as shown in W3 looks this good on single bandpass transformer receivers. you could stop right here and not do a lick more. But there is a crossover in petal No. I (extreme left), and you may be able to reshape all petals symmetrically and delete crossovers at the same time with some careful manipulation of the bottom and top cores of T701, youre pretty close when the pattern in W4 (Fig. 5) is completed. A visual check of the color bars on the CRT still shows the fourth magenta bar where it should be, the tint control rotatable through its green to lavender range. producing flesh tones at center

R-E

READER COMMENTS WANTED

We'll soon complete the listing of substitutes for semiconductors with $2 N$ type numbers and will then start on foreign types. We can begin with either European types like the AC105 and BC107 or Japanese types such as the 2SA152. Please let us know whether you want the European or Japanese listings first.

R-E's Substitution guide for replacement transistors PART XIV

compiled by ROBERT \& ELIZABETH SCOTT

ARCH-Indicates the Archer brand of semiconductors sold only by Radio Shack and Allied Radio stores. Allied Radio Shack, 2725 W. 7 th St. Ft. Worth. Texas 76107

DM-D. M. Semiconductor Co., PO. Box 131, Melrose, Mass. 02176
GE-General Electric Co., Tube Product Div. Owensboro, Ky. 42301

ICC-International Components, 10 Daniel Street, Farmingdale, N.Y. 11735
IR-International Rectifier, Semiconductor Div, 233 Kansas St., El Segundo, Calif. 90245
MAL—Mallory Distributor Products Co., 101 S. Parker, Indianapolis, Ind. 46201

MOT-Motorola Semiconductors, Box 2963, Phoenix, Ariz. 85036
RCA-RCA Electronic Components, Harrison, N.J. 07029
SPR—Sprague Products Co., 65 Marshall St., North Adams, Mass. 01247
SYL-Sylvania Electric Corp., 100 1st Ave., Waltham, Mass. 02154
WOR-Workman Electronic Products, Inc., Box 3828 , Sarasota. Fla. 33578
ZEN-Zenith Sales Co, 5600 W Jarvis Ave., Chicago. III. 60648
Radio-Electronics has done its utmost to insure that the listings in this directory are as accurate and reliable as possible; however, no respons ibility is assumed by Radio-Electronics for its use. We have used the latest manufacturers material available to us and have asked each manufacturer covered in the listing to check its accuracy. Where we have been supplied with corrections, we have updated the listing to include them. The first part of th is Guide appeared in March 1973

	ARCH	DM	G-E	ICC	IR	MAL	MOT	RCA	SPR	SYL	WOR	ZEN
2N2987	NA	T-714	GE-18	NA	NA	PTC 144	HEP-714	NA	NA	NA	NA	NA
2N2988	NA	T-714	GE-18	NA	NA	PTC 144	HEP-714	NA	NA	NA	NA	NA
2N2989	NA	T. 714	GE-18	NA	NA	PTC 144	HEP-714	NA	NA	NA	NA	NA
2N2990	NA	T. 714	GE-18	NA	NA	PTC 144	HEP-714	NA	NA	NA	NA	NA
2N2991	NA	NA	NA	NA	NA	NA	HEP-714	NA	NA	NA	NA	NA
2N2992	NA	NA	NA	NA	NA	NA	HEP-714	NA	NA	NA	NA	NA
2N2993	NA	NA	NA	NA	NA	NA	HEP-714	NA	NA	NA	NA	NA
2N2994	NA	NA	NA	NA	NA	NA	HEP. 714	NA	NA	NA	NA	NA
2N2995	NA	NA	NA	NA	NA	NA	HEP-714	NA	NA	NA	NA	NA
2N2996	RS276-2003	T-3	GE-51	CC-3	TR-17	PTC 107	HEP-3	SK 3006	NA	NA	WEP-637	ZEN 301
2N2997	RS276-2003	T-3	GE-51	ICC-3	TR-17	PTC 107	HEP-3	NA	NA	NA	WEP-637	ZEN 301
2N2998	RS276-2003	T-3	GE-51	ICC-3	TR-17	PTC 107	HEP-3	NA	NA	ECG 160	WEP-637	ZEN 301
2N2999	NA	T. 636	NA	NA	TR-17	PTC 107	NA	NA	NA	ECG 160	WEP-637	NA
2N3000	NA		NA	NA	NA	NA	HEP-630	NA	NA	NA	NA	NA
2N3001	NA	NA	NA	NA	NA	NA	HEP-R1001	NA	NA	ECG 5400	NA	
2N3002	NA	NA	NA	NA	NA	NA	HEP-R1002	NA	NA	NA	NA	NA
2N3003	NA	NA	NA	NA	NA	NA	HEP-R1003	NA	NA	NA	NA	NA
2N3004	NA	SR. 1005	NA	ICC-R1005	NA	NA	HEP-R1005	NA	NA	NA	NA	NA
2N3005	NA	NA	NA	NA	NA	NA	HEP-R1001	NA	NA	ECG 5400	NA	NA
2N3006	NA	NA	NA	NA	NA	NA	HEP-R1002	NA	NA	ECG 5401	NA	NA
2N3007	NA	SR-1003	NA	NA	NA	NA	HEP-R 1003	NA	NA	ECG 5402	NA	NA
2N3008	NA	SR-1003	NA	NA	NA	NA	HEP-R1005	NA	NA	ECG 5404	NA	NA
2N3009	RS276-2009	T-50	GE-20	ICC-50	IRTR-64	PTC 136	HEP-50	SK 3122	RT-102	ECG 123A	WEP-735	ZEN 100
2N3010	RS276-2011	T-56	GE-61	ICC-56	IRTR-24	PTC 136	HEP-56	SK 3039	RT-113	ECG 108	WEP-56	ZEN 104
2N3011	RS276-2011	T-56	GE-20	ICC-56	IRTR-24	PTC 136	HEP-56	SK 3039	RT-113	ECG 108	WEP-56	ZEN 104
2N3012	Rs276-2023	T-52	GE-21	ICC-52	IRTR-24	PTC 127	HEP-52	SK 3114	RT-115	ECG 159	WEP-717	NA
2N3013	RS276-2011	T-56	GE-20	ICC-56	IRTR-64	PTC 136	HEP-56	SK 3122	RT-102	ECG 123A	WEP-735	ZEN 104
2N3014	RS276-2011	T-56	GE-20	$1 \mathrm{CC}-56$	IRTR-64	PTC 136	HEP-56	SK 3122	RT-102	ECG 123A	WEP-735	ZEN:04
2N3015	NA	T-729	GE-17	NA	NA	PTC 121	HEP-S3001	NA	RT-100	NA	WEP-51	NA
2N3016	NA	NA	NA	NA	NA	NA	HEP-S3002	NA	NA	NA	NA	NA
2N3017	NA	NA	NA	NA	NA	NA	HEP-S3004	NA	NA	NA	NA	NA
2N3018	NA	NA	NA	NA	NA	NA	HEP-S3004	NA	NA	NA	NA	NA
2N3019	NA	T-714	GE-18	ICC-714	NA	PTC 125	HEP-714	NA	NA	NA	NA	NA
2N3020	NA	T-706	GE-27	NA	NA	PTC 144	HEP-714	NA	NA	NA	NA	NA
2N3021	NA	TS-3031	GE-69	NA	NA	NA	HEP-246	NA	NA	NA	NA	NA
2N3022	NA	TS-3031	GE-69	NA	NA	NA	HEP-246	NA	NA	NA	NA	NA
2N3023	NA	TS-3031	GE-69	NA	NA	NA	HEP-246	NA	NA	NA	NA	NA
2N3024	NA	TS-3031	GE-69	NA	NA	NA	HEP-705	NA	NA	NA	NA	NA
2N3025	NA	TS-3031	GE-69	NA	NA	NA	HEP-705	NA	NA	NA	NA	NA
2N3026	NA	TS-3031	GE-69	NA	NA	NA	HEP-705	NA	NA	NA	NA	NA
2N3027	NA	SR-1001	NA	ICC-R1001	NA	NA	HEP-R1001	NA	NA	ECG 5400	NA	NA
2N3028	NA	SR-1002	NA	ICC-R1002	NA	NA	HEP-R1002	NA	NA	ECG 5401	NA	NA
2N3030	NA	SR-1001	NA	ICC-R1003	NA	NA	HEP-R1003	NA	NA	ECG 5402	NA	NA
2N3031	NA	SR-1002	NA	ICC-R1002	NA	NA	HEP-R1002	NA	NA	ECG 5401	NA	NA
2N3032	NA	NA	NA	NA	NA	NA	HEP-R1003	NA	NA	ECG-5402	NA	NA
2N3033	NA	NA	NA	NA	NA	PTC-125	NA	NA	NA	NA	NA	NA
2N3034	NA	T-714	GE-18	NA	IRTR-53	PTC 123	NA	NA	NA	NA	WEP 243	NA
2N3035	NA	T. 714	GE-18	NA	TR-21	PTC 153	NA	SK 3039	RT-113	ECG 108	WEP 56	NA
2N3036	NA	T-714	GE-18	NA	IRTR-87	PTC 123	HEP. 714	NA	NA	NA	NA	NA
2N3037	NA	T. 714	GE-18	NA	IRTR-87	PTC 123	HEP-S0001	NA	NA	NA	NA	NA
2N3038	NA	T-714	GE-18	NA	IRTR-87	PTC 123	HEP-S0001	NA	NA	NA	NA	NA
2N3039	NA	T-715	GE-21	ICC-715	TR-28	PTC 103	HEP-715	NA	NA	NA	WEP 717	ZEN 106
2N3040	NA	T-716	GE-21	ICC-716	TR-28	PTC-103	HEP-716	NA	NA	NA	WEP 717	ZEN 107
2N3043.	NA	T-728	GE-10	ICC-728	TR-24	PTC 121	HEP-728	NA	NA	NA	WEP 735	ZEN 114
2N3044.	NA	T-728	GE-10	ICC-728	TR-24	PTC 121	HEP-728	NA	NA	NA	WEP 735	ZEN 114
2N3045*	NA	T-728	GE-10	ICC-728	TR-24	PTC 121	HEP-728	NA	NA	NA	WEP 735	ZEN 114
2N3046.	NA	T-729	GE-10	ICC-729	TR-24	PTC 121	HEP. 729	NA	NA	NA	WEP 735	ZEN 115
2N3047*	NA	T-729	GE-10	CC. 729	TR. 24	PTC 121	HEP-729	NA	NA	NA	WEP 735	ZEN 115
2N3048**	NA	T-729	GE-10	ICC-729	TR-24	PTC 121	HEP. 729	NA	NA	NA	WEP 735	ZEN 115
2N3049**	NA	T-716	NA	CC-716	TR-20	PTC 103	HEP-716	NA	NA	NA	WEP 717	ZEN 107
2N3050**	NA	T-716	NA	ICC-716	TR-20	PTC 103	HEP-116	NA	NA	NA	WEP 717	ZEN 107
2N3051*	NA	T-716	NA	ICC-716	TR-20	PTC 103	HEP-716	NA	NA	NA	WEP 717	ZEN 107
2N3052*	NA	TS-3020	GE-63	NA	TR-25	PTC 144	HEP-S0004	NA	NA	NA	WEP 243	NA
2N3053	RS276-2018	T-714	GE-63	ICC-S3011	IRTR-87	PTC 144	HEP-S3011	SK 3024	RT-114	ECG 128	WEP 243	NA
2N3054	RS276-2017	T-703	GE-66	CC-703	TR-57	PTC 112	HEP. 703	SK 3026	RT-154	ECG 175	WEP 701	NA
2N3055	NA	T-704	GE-14	ICC-704	IRTR-36	PTC 140	HEP-704	SK 3027	RT-131	ECG 130	WEP 247	NA
2N3056	NA	T-714	GE-18	NA	IRTR-87	PTC 144	HEP-714	NA	NA	NA	NA	NA
2N3057	NA	T-714	GE-18	CC-714	IRTR-87	PTC 110	HEP-714	NA	NA	NA	WEP S3021	NA
2N3058	RS276-2023	T-52	GE-21	ICC-52	NA	PTC 103	HEP-52	SK 3114	RT-115	ECG 150	WEP 717	NA
2N3059	RS276-2023	T-52	GE-67	ICC-52	NA	PTC 127	HEP-52	SK 3114	RT-115	ECG 159	WEP 717	NA
2N3060	RS276-2023	T-52	GE-67	ICC-52	TR-28	PTC 123	HEP-52	SK 3114	RT-115	ECG 159	WEP 717	NA
2N3061	NA	TS 3031	GE-67	NA	TR-28	PTC 103	HEP-739	NA	NA	NA	NA	NA
2N3062	RS276-2023	T-52	GE-21	ICC-52	IRTR-88	PTC 127	HEP-52	SK 3114	RT-115	ECG 159	WEP 717	NA
2N3063	NA	T-51	GE-21	NA	IRTR-88	PTC 127	NA	NA	NA	NA	NA	NA
2N3064	NA	T-51	GE-21	NA	IRTR-88	PTC 127	NA	NA	NA	NA	NA	NA

	ARCH	DM	G-E	ICC	IR	MAL	MOT	RCA	SPR	SY		
	$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & 801 \\ & 801 \\ & \text { V01 } \\ & 802 \end{aligned}$		$\begin{gathered} N A \\ N A \\ N A \\ N A \\ 1 \\ 1 \\ \hline A-802 \end{gathered}$	$\begin{gathered} 1 R T \mathrm{R} \cdot \mathrm{BB} \\ N A \\ N A \\ N A \\ N A \end{gathered}$	$\begin{aligned} & \text { PTT } 151 \\ & \text { PT } 151 \\ & \text { NA } \\ & \text { PTC } 151 \end{aligned}$	$\begin{gathered} N A \\ N A \\ N A \\ N \in P(8) \\ H \in P-802 \end{gathered}$		$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \end{aligned}$			va
		$\begin{gathered} -802 \\ \substack{-505 \\ T-552 \\ T-3} \end{gathered}$			$\begin{gathered} N A \\ T A-28 \\ T A-20 \\ T R-17 \end{gathered}$		Hep		$\begin{gathered} \text { NA } \\ \begin{array}{c} \text { RA } \\ \text { RTH15 } \\ \text { RT-115 } \end{array} \end{gathered}$			$\begin{aligned} & 123 \\ & V A \end{aligned}$
		$\begin{gathered} \substack{7.51 \\ \hline \\ \hline-729} \end{gathered}$	$G E-18$ $G E-18$ $G E-67$ $G E-17$ G	$\begin{aligned} & 10 C .713 \\ & 10 C-51 \\ & \mathrm{NA} \end{aligned}$		${ }^{\text {PTC } 109}$ PTC 121 PTC 103 PTC 121	$\begin{aligned} & \text { Hep } \\ & \text { HEP } \end{aligned}$					
	$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{gathered} 1.802 \\ \substack{1-802 \\ T-802} \end{gathered}$			$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { PCC } \\ & \text { PTC } \\ & \text { PTC } \\ & \text { PTC } \end{aligned}$		$\begin{aligned} & \text { sk } 3112 \\ & \text { Sk } 3112 \end{aligned}$	$\begin{aligned} & N A \\ & N A \\ & N A \end{aligned}$		$\begin{gathered} 720 \\ \hline 201 \\ 301 \\ 301 \\ 001 \end{gathered}$	
$\begin{aligned} & \text { 2N31007 } \\ & 2 N 313 \\ & 2 N 3108 \end{aligned}$	$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{gathered} T-802 \\ T-802 \\ T N .802 \\ \text { TS.B02 } \\ T S-3002 \end{gathered}$		$\begin{gathered} \text { ICC-802 } \\ \text { ICC-802 } \\ \text { NA } \\ \text { ICC-S3002 } \\ \text { ICC-S30020 } \end{gathered}$			Hep	$\frac{N A}{N A}$	$\begin{aligned} & N A \\ & N A \\ & N A \end{aligned}$	$\begin{gathered} \mathrm{NA}^{\prime} \\ \mathrm{NA} \end{gathered}$	$\begin{aligned} & 801 \\ & \hline 801 \\ & \hline 801 \\ & 3002 \\ & \hline 002 \end{aligned}$	${ }_{4}^{123}$
	$\begin{aligned} & N A \\ & N A \\ & N A \end{aligned}$		$\mathrm{GE}^{\mathrm{ND}}$				$\underset{\substack{\text { Hep } \\ \text { Hep } \\ \text { He }}}{ }$	$\begin{gathered} N A \\ N A \\ N K A \\ \text { sk } 3104 \end{gathered}$	$\stackrel{A}{\prime A}$	$\frac{A}{A}$		
		$\begin{array}{r} T-714 \\ T .714 \end{array}$	$\begin{gathered} \text { Ge } \\ \text { Ge } \end{gathered}$	$\begin{aligned} & 1 \mathrm{CC}-5 \\ & 1 \mathrm{CC}-5 \\ & 1 \mathrm{CCC}-7 \end{aligned}$		$\begin{aligned} & \text { PTC } 136 \\ & \text { PTC } 136 \\ & \text { PCT } 123 \\ & \text { PTC } 110 \\ & \text { PTC } 111 \end{aligned}$	$\begin{aligned} & \text { Hep } \\ & \text { HEPR } \end{aligned}$	$\begin{gathered} 5 \mathrm{SK} \mathrm{~S}_{3} \mathrm{Na4} \\ N A \\ N A \end{gathered}$	$\frac{R_{1-1 / 1 / 4}^{N A}}{\mathrm{NA}}$		WEP 243	102 103 Na
	RS		$\begin{aligned} & \mathrm{GE}-\mathrm{C} \\ & \mathrm{GE} \end{aligned}$	$\begin{aligned} & 10-5150 \\ & 1 C-53 \\ & N A \\ & N A \end{aligned}$	$\stackrel{T R}{\substack{\text { RTN }}}$	$\begin{aligned} & \text { PTC } 127 \\ & \text { PTT 120 } 103 \\ & \text { PCT } 144 \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \text { HEP } \\ & \text { HEP } \end{aligned}$ $\begin{aligned} & \text { HEP-S } \\ & \text { HEP- } \end{aligned}$	$\begin{aligned} & \text { SK } \\ & \text { SK } \end{aligned}$	102	$\begin{gathered} \mathrm{ECG}+\mathrm{iza} \mathrm{~A} \\ \mathrm{NA} \end{gathered}$	$\begin{aligned} & \text { Na } \\ & \text { NA } \end{aligned}$	N $\begin{gathered}101 \\ \mathrm{Na}\end{gathered}$
$\begin{aligned} & 2 \pi 31 \\ & 2 N 3) \\ & 2 N 3) \\ & 2 \times 312 \end{aligned}$	$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{gathered} \mathrm{T} .399 \\ \mathrm{~T}-7299 \end{gathered}$	$\begin{array}{cc} \mathrm{NE}-3 \\ G E-17 \\ G E-17 \end{array}$	$\begin{gathered} N A C-3 \\ \begin{array}{c} N A \\ N A \end{array} \\ \hline \end{gathered}$				$\begin{gathered} \mathrm{NA} \times 124 \\ \text { Sk } 3122 \end{gathered}$				
$\begin{aligned} & 2 \mathrm{~N} 3313 \\ & 2 \times 3132 \\ & 2 \times 3132 \\ & 2 \times 3134 \end{aligned}$		$\begin{gathered} \mathrm{NA} A 2 \\ \substack{\mathrm{~T}-3,5 \\ T-515} \end{gathered}$	NA GE.16 GE.21 GE. 67 .			PTC 105		$\begin{aligned} & \text { SK } \\ & \text { SK } \\ & \text { S. } \end{aligned}$	$\begin{aligned} & \text { NA } \begin{array}{c} \text { RA } \\ \text { RT } 1.17 \\ \text { RT-115 } \end{array} \end{aligned}$	ECG 129		
$\begin{aligned} & 2 N 3136 \\ & 203137 \\ & 233138 \\ & 2 \times 3140 \end{aligned}$			$\begin{aligned} & G E-21 \\ & G E-67 \\ & G E-11 \\ & G E-66 \\ & G E-66 \\ & G E-64 \end{aligned}$	$\begin{gathered} 10.51 \\ 1 C C-56 \\ 1 C-5003 \\ 1 C C-55003 \end{gathered}$		$\underset{\substack{\text { PIC } 103 \\ \text { NA } 103 \\ \text { NA }}}{ }$		$\begin{gathered} \text { SK } 3114 \\ \text { SK } 3039 \\ \text { Na } \\ \text { NA } \end{gathered}$	$\begin{gathered} \text { RT-1.15 } \\ \substack{\text { RT } 108 \\ \text { NA } \\ \text { NA }} \end{gathered}$	$\begin{gathered} \text { ECG } 159 \\ \left.\begin{array}{c} \text { ECG } 107 \\ N A \\ N A \end{array}\right) \end{gathered}$	$\begin{gathered} \text { NEP } \mathrm{N} 220 \\ \text { NA } \\ \text { NA } \end{gathered}$	$\begin{aligned} & \text { ZEN } 101 \\ & \text { ZRN } 104 \\ & \text { ZNEN } 210 \\ & \text { ZEN } 210 \end{aligned}$
	$\begin{gathered} N A \\ N A \\ N A \\ N A \\ 276.2003 \end{gathered}$			$\begin{gathered} 10 C-50503 \\ 1 C-C 55003 \\ N A \\ N A \\ 1 C C-3 \end{gathered}$	$\begin{gathered} \text { IRTR-66 } \\ \text { RTR. } \\ \text { RTR } \\ \text { NA } \\ \text { TRA-17 } \end{gathered}$		$\begin{gathered} \text { HEPPS5003 } \\ \substack{\text { Hef. } 5003 \\ N A \\ M A R-3} \\ H \in P-3 \end{gathered}$	$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & N A \\ & N A \\ & N A \\ & C A 160 \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \begin{array}{l} \text { NA } \\ N A A \end{array} \end{aligned}$	$\text { N } 210$
2 N 354 2 N 153 23364	$\begin{aligned} & N A \\ & N A \\ & N A \end{aligned}$		$\begin{gathered} N A \\ G E \cdot 62 \\ N A \\ N A \\ N A \end{gathered}$		$\begin{aligned} & N A \\ & N A \\ & N A \\ & T R-29 \\ & N A \end{aligned}$	$\begin{aligned} & N A \\ & { }^{2}{ }^{2} 129 \\ & N A \\ & N A \\ & N A \end{aligned}$		$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \end{aligned}$			$\begin{gathered} \text { ZEE 208 } \\ \text { ZEN } 301 \\ \text { NA } \\ \text { NA } \\ \text { NA } \end{gathered}$
	$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \\ & N A \end{aligned}$		$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \\ & N A \end{aligned}$		$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \\ & N A \end{aligned}$			$\begin{aligned} & N A \\ & \begin{array}{l} N A \\ N A \\ N A \end{array} \end{aligned}$	$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & N A \\ & N A \\ & N A \\ & N A \end{aligned}$	WEP W WEP W WEP W	¢ $\begin{gathered}\text { NA } \\ N A \\ N A \\ N A\end{gathered}$

-Indicates a dual transistor for high-speed switching, diff amplifier etc. Likely to be a matched pair. Use two of the type specified, matching when necessary, on a curve tracer or lab-type transistor checker

READER QUESTIONS
(continued from page 27)
boost filter: note that the boost goes through 560 k before it gets there.

If you'll check that $10-\mu$ F electroly-
much that you don't develop any boost voltage. I found about 75 to 80 volte p-p of hash on the one I had, indicating that the capacitor was wide open.

Without boost voltage (which is the plate voltage of the 6DQ6 horizontal output) you won't get enough output;

tic capacitor in the +135 volt line, you'll find that it's open! This puts the 12 K resistor "in series" with the boost pulse, and raises the impedance so
you'll have half the high voltage and half the sweep width. This is a rather unusual circuit. but the basic reactions are just the same.

need belts?

We've thousands in stock

Ready for immediate shipment! Belts for over 1800 makes and models of tape recorders, projectors, dictating machines, video recorders and our simplified cross reference system makes it easy for you to order. Drive tires, wheels, phono idlers also listed. On most items we can ship the same day. Call or write today for your free catalog/cross reference chart.
PROIECTOR-RECORDER BELT CORP. 314 Whitewater St., Whitewater, Wisconsin 53190 414/473-2151

Circle 18 on reader service cord

Train at home on NTS equipment like this:

NTS Audio Electronics Servicing
Know tweeters, woofers and baffles-sound distortion, amplification and control - public address and music systems. Kits you build and keep include Heath 60-watt stereo re- AM-FM Solid-State ceiver, twin speakers 60-Watt Stereo Receiver Volt-Ohmmeter, digital meter, in-circuit transistor tester, solid-state

NTS Automation and Computer Electronics Master computer servicing technology as you build this solid-state Compu-Trainer - an NTS exclusive! Duplicates circuit technology of giant computers in industry, do your own wiring, patch-cording, assembly. Other kits you build and keep: 5 -inch wide-band solid-state oscilloscope, FET Volt-Ohmmeter, Electro-Lab.

Project Method Training - 'heart' of the NTS system.

NTS Project Method Training is a better way to learn electronics. With easy-to-follow lessons, comprehensive kit manuals, large fold-out charts and more, you'll build advanced equipment while you learn electronics principles and applications. You'll learn how components work, why they work, what to do when they don't work. In short, you'll use your mind and your
hands to develop ability and confidence. This is why don't work. In short, you'll use your mind and your
hands to develop ability and confidence. This is why the NTS Project Method is such an invaluable part of your program.

NTS color and b\&w tv servicing

Build the largest and most advanced solid-state color TV. A 315 sq. in. ultra-rectangular matrix picture tube, Varactor Diode Tuner, Electronic Character Generator and more. Or build B\&W TV with cabinet. Both TV's feature "instant on" Automatic Fine Tuning, solid-state design, and more. Other kits you build and keep: Solid-State Pocket Radio, Troubleshooter, AM/SW Radio, Volt-Ohmmeter, Color Bar/Dot Generator, Electronic Tube and Transistor Tester, TV Vector Monitor Scope and 5 -inch Oscilloscope. Send card or coupon for all new color catalog and full details today.

NTS gives you confidence-building extras!

- Job Getting Manual
- Advice On Starting A Business
- Answers To On-The-Job Questions
- Illustrated Electronics Dictionary
- Mechanics \& Science Bulletins

NATIONAL
 난 TECHNICAL
 SCH00LS

Technical-Trade Training Since 1905 Resident \& Home Study Schools 4000 SOUTH FIGUEROA ST., LOS ANGELES, CA. 90037

Feel at home on jobs like these:

NTS builds your confidence with more solid training in Solid-State

NTS Training on professional solid-state equipment prepares you for many careers - in many consumer, commercial and industrial fields. If television is your chosen field, you could join a first class TV repair center, start a shop of your own, or specialize in industrial applications of television such as security system installation. And other electronic fields are continuing to grow, revolutionizing industry and communications, even reshaping our own lives. Opportunities are opening in home entertainment areas, commercial audio systems, mobile communications,
computer servicing, industrial controls and many other service technician areas. Yes, this is truly "The Age of Electronics." Your NTS training and the equipment you receive prepare you for these exciting careers wherever electronic technicians are needed. Start now! Build your confidence along with new skills in electronics. You may start earning extra money even before you graduate! Check your course on the card or coupon and mail today! No obligation. No salesman will call.

Master Technician: Communications Electronics

Master Technician: Industrial Electronics

Master Technician: Home Entertainment Electronics

Classroom training at Los Angeles
You can take classroom training at Los Angeles in sunny Southem California. NTS occupies a city block with over a million dollars in facilities devoted exclusively to technical training. Check box in coupon.

Master Technician: Computer Electronics

Approved for Veteran Training

Accredited Member: National Association of Trade and Technical Schools; National Home Study Council.

Reduce shock hazard Bypass line noise usTRIAD isolation transformers

Available from stock at your Triad Distributor

Since many TV sets now have one side of the power line connected to the chassis, an isolation transformer is a "must" to prevent shock. Forsafety'ssake, use Triad when you have a set on the bench to repair.
Triad isolation transformers are also ideal for use in screen rooms for isolation of lab oratory test equipment . . reduction of line disturbances ..elimination of undesired grounds. Available in a wide range of volt ampere ratings for operation at $50 / 60 \mathrm{~Hz}$ Static shielding, separating primary and secondary windings, provides inductive coupling which is essentially free from capacity coupling Write for the Triad catalog today. Triad-Utrad Distributor Services, 305 N. Briant St., Huntington, Ind 46750

Cat. No	Output (VA)	Input Volts	Output Volis
N-51X	35	115	115
N-68X	50	$115-230 \S$	115
N-53M	85	115	115
N-54M	150	115	115
N-73A	150	115	$115-230 \S$
N-74A	150	115	$57.5-115 \S$
N-67A	150	$115-230 \S$	115
N-55M	250	115	115
N-66A	250	$115-230 \S$	115
N-59M	1000	115	115
N-469A	50	$220-440 \S$	115
N-470A	150	$220-440 \S$	115
N-471A	300	$220-440 \S$	115
60Hz only	§Split Winding		

TRIAD-UTRAD
Distributor Services

ALL ABOUT TRANSFORMERS

(continued from page 45)
at B, and an ideal response at C. The typical transformer response varies less than 2.0 dB between 100 and 10,000$) \mathrm{Hz}$, and is acceptable for most uses

For replacement purposes, the "universal" audio output with many taps for impedance variation has been popular for many years. Figure 13 shows a similar transformer

FREQUENCY (Hz)
FIG. 12--FREQUENCY RESPONSE of three grades of af transformers. Curve A is typical, C is h-fi and B is acceptable for narrow-band communications equipment.

FIG. 13-PA MATCHING TRANSFORMER designed to distribute speaker power as needed.
that has recently become popular with 70.7 -volt audio distribution systems. With this system. the output of an audio power amplifier at 70.7 volis (or 25 volts) can be divided in any desired manner among any number of speakers. And those speakers may have any combination of impedances.

Although meeting the definition of a transformer. the two windings used to inductively couple stages of radio trequency amplification are seldom referred to as being a transformer. Naturaliy this is one reason that most receivers use a hetrodyne system to develop the intermediate frequency (i.f.), With standardization of the intermediate frequencies at +55 kHz .4 .5 MHz . 10.7 MHz . and 40 to +8 MHz . for the various broadeast services, it becomes simple to design and construct transformer units. Such i.f. transformer units usually include capacitors, resistors, or other inductors associated with the resonant and amplifying circuits. For example. the converter of a standard broad-

FIG. 14-I.F. TRANSFORMER with untuned primary is common in transistor AM receivers.

COMPONENT

LEAD

BENDER

- Eliminates trial and error lead bending.
- Fast, exact, thumbwheel adjusted spacing between bends.
- "Breezes" through special units and short production runs.
- Increases production 50%. Pays for itself within a week.

Ask for MODEL N. 300 for $1 / 4$ watt and larger components; MODEL N. 400 for micro-components.

Immediate delivery from.
HARWIL COMPANY
903 Colorado Avenue, Santa Monica
California 90401 phone: $213 / 394-4710$
Circle 19 on reader service card

Security is the infont TV was in 1954

By 1994 most American homes and businesses will have security systems just as most have a IV set today.

In 1974 some electronic service technicians and communication specialists are going to enter the security field by installing 8 to 010 security systems.

PLC Security Systems are designed and prepackaged for installation by electronics businessmen, and the proof is in the PLC catalog.
Send for your free copy today.

Electronics, Inc.
39-50 Crescent St, L.I.C., N.Y. 11101
cast receiver feeds into an untuned primary of an i.f. transformer as shown by Fig. 14. Also included within this transformer unit is the capacitor C_{s} of Fig. 14 which resonates with the secondary inductor Is. The i.f. transformer feeding into the FM discriminator (Fig. 15) also has a capacitor

TO PLATE
OR COLLECTOR

Fig. 15-FM DISCRIMINATOR TRANSFORMER has tuned windings and capacitance coupling to the secondary center tap.

b)

FIG. 16-AUTO TRANSFORMER may be step-up (a) or step-down (b), depending on connections.
coupling the high side of the primary to the secondary center-tap as well as an of choke.

TV receivers make use of a special transformer in developing the very high voltage (up $10.30,(0) 0$ volts) accelerating the electron beam loward the picture tube screen. This is the horizontal output or flyback transformer. It has only one winding, and is a type of autotransformer. In Fig. 16-a. a small portion of this single winding is the primary of a step-up transformer. With the entire winding of the autotransfomer in Fig. $16-6$ used as the primary to develop the magnetic field, it becomes a step-down type. Sawtooth voltages fed into the primary (between A and B of Fig. 16-a) produce a high voltage across the secondary between A and C. Actual flyback transformers have other secondary windings providing filament voltage for the high-voltage rectifier as well as horizontal deflection current.

The fastest, easiest, most-reliable, least-expensive way to test transistors

Sprague's Model A Transistor Curve Tracer by Jud Williams Incorporates Dynamic Signature Pattern ${ }^{T M}$ Servicing Technique

Eliminate transistor damage. Did you ever unsolder a transistor to test it, find it defective, then wonder if it was ruined in removal? Or, if the device tested OK, how about the ticklish job of resoldering without damage to either transistor or board? The solution to such problems is in-circuit testing with the "Signature Pattern" technique.

What are Signature Patterns? They are scope readouts of the dynamic impedance of in-circuit transistors. With this unique test method, the transistor under test is actually turned on, not merely made to oscillate, as with conventional techniques. The "Signature Pattern" method of trouble-shooting has these definite advantages: (1) Quick, decisive, "good-or-bad" tests of suspect transistors; (2) Discovery of defective components within transistor circuits even when transistors are good; (3) Elimination of damage to transistors and other components; (4) Safe testing with systen power removed.

Quick, accurate tests. By observing the family of curves, you can determine at a glance such parameters as gain, linearity, saturation, avalanche point, and leak-
age. No zeroing or balancing is necessary. The Model A also performs the all-important breakdown voltage test. It will identify a transistor type as either silicon or germanium. In addition, it will analyze an FET as either junction-type or insulated gate, as well as determine the pinch-off voltage.

Service modules profitably.

 With more and more set-makers switching to modular circuitry, it becomes economically difficult for service shops to stock a variety of plug-in panels in quantity ... not to mention excessive costs to your customers when panel replacements are made. Ailso, you waste valuable time processing paper work and preparing modules for shipment to the factory for repair or credit. The practical solution is to quickly and economically repair fefective modules in your own shop with the "Signature Pattern" test technique.Low-cost testing.
When the Sprague Model A Curve Tracer is connected to any general-purpose scope, you have the most complete semiconductor testing facility possible at a budget price ... only $\$ 149.50$.

The Pencil Soldering Iron with Operating Light, 2 Heats and On/Off Switch $\underset{\substack{\text { NET }}}{\$ 10.95}$

Model 540s Soldering Iron length $8 \frac{1}{2} 2^{\prime \prime}$ Weight 2 oz

- Light shows when it's on
- 2 heats-20w and 40 w for any job
- Ironclad tips for longer life
- Cool, unbreakable polycarbonate handle
- Burn-resistant neoprene cord
- Converts to a desoldering iron with low cost attachment

The Pencil Desoldering Iron with Operating Light, and On/Idle/Off Switch
$\$ 15.95$ NET

$$
\text { Model } 510 \text { Length } 81 / 2^{\prime \prime}
$$ Desoldering Iron Weight $31 / 2$ oz

- Light shows when it's on
- Operates at 40 w ; idles at 20 w for longer tip life
- 6 tip sizes available to handle any job
- Cool, unbreakable polycarbonate handle
- Burn-resistant neoprene cord
- Exclusive new bracket insures alignment, prevents damage
New kits also available!
- Soldering Kits - Desoldering Kits - Soldering.Desoldering Kıts See your distributor or write

new products

More information on new products is available from the

 manufacturers of items identified by a Reader Service number. Use the Reader Service Card inside the back cover.transistor and fet tester. tF2g touch Tone Cricket. Just hook the test leads to the three elements in any pattern and push the buttons The "Cricket" chirps, indicating a good test. Grod/bad levels are indicated on meter:

meter tells you good or bad for replacement without removal from circuit. Out-of-circuit leakage test in microamps is included

Lead storage compartment and sliding meter cover included in unbreakable acrylic case. $10 x$ $51 / 2 \times 31 / 2 \mathrm{in}$; 4 lbs .. $\$ 140.00$-Sencore, 3200 Sencore Drive, Sioux Falls, S.D. 57107.

$$
\text { Circle } 31 \text { on reader service card }
$$

TV TUNER SUBBER, model Mark IV-A. New model of Subber Mark $I V$ comes complete with batteries plus wall plug-in transformer and inbuilt power supply. Change-over to battery operation is automatic when ac transformer is disconnected.

Unit substitutes for tuner; also substitutes for $40-\mathrm{MHz}$ i.f. signal at any point in i.f. chain up to final i.f. stage. Receiver operates normally

without overriding agc line with fixed bias supply. Low-impedance output circuit matches older bandpass coupling i.f. inputs, late model link coupled inputs, and any input in i.f. chain to final i.f. stage. Output level is high; output bandwidth is maintained. $\$ 54.95$. Castle Television Tuner Service, Inc., 5710 North Western Avenue, Chicago, III. 60645.

Circle 32 on reader semice card
FUNCTION GENERATOR, model Mk1 features decade frequency ranges from 10 Hz to 1 MHz ; dc offset control, 20 volts p-p maximum output: variable plus calibrated attenuator, output amplitude flat over entire frequency range: auxiliary TTL output on rear panel: FM or VCO operation through rear panel jack; independent controls; waveform symmetry constant over frequency

range.
Dial accuracy: $\pm 5 \%$ of full scale. Variable attenuator: 0 to -20 dB , minimum: calibrated attenuator: 3 positions -normal (0 dB), - 20 dB . and -40 dB . Output impedance is 600 ohms; sinewave distortion: less than 3% from 10 Hz to 100 kHz , less than 5% from 100 kHz to 1 MHz . Power requirements: $117 \mathrm{Vac}, 50-60 \mathrm{~Hz}$, less than $10 \mathrm{~W} .11 \times 4 \times 81 / 2 \mathrm{in}$.; kit $\$ 135.00$; assembled \$195.00.-American Circuits and Systems, Inc., P.O. Box 149. Planetarium Station, New York. N.Y. 10024

Circle 3.3 on reader service card
BREADBOARDING SYSTEM, Proto Board 103 Allows user to build, plug-in, modify, wre, test. add, or remove circuits quickly, using twenty four 14-pin DIP's, without solder or patch cords. input/output and processing circuits separate

by using different power buses and separate sockets tor every part of the design. Each section can be tested independently because user can break up power and ground lines. Extra IC's or components can be plugged-in and interconnected with No. 22 AWG solid hook-up wire.
Board uses multıple OT sockets and bus strips as interconnecting components for expanding or contracting a system. There are 2,250 solderless plug-in tie points. Socket array consists of three QT-59S's with 1.770 tie points (354 terminals with 5 tie points each), distribution matrix (bus strips) consists of three OT-59B's with 480 the points (8 buses of 50 tie points each). There is one QT-47B with 80 more tie points (2 buses of 40 tie points each). $6 \times 9 \times$ $1 / 8$ inches; $\$ 59.95$.-Continental Specialties Corp., 325 East Street. P. O. Box 1942, New Haven, Conn. 06509.

Circle 34 on rededer service card
EXCITER/TRANSMITTER, B-910 \& B-910T. 10-watt educational FM broadcast transmitter and FM exciter. Phase-lock techniques control the FM oscillator operating at one-half the assigned frequency. Features low FM noise, -68 db or better, af distortion at 0.3%, and $\pm 0.5 \%$

frequency response. Permits immediate conversion to stereo and/or SCA multiplex by inserting optional modules.
Automatic protective circuitry provides indication of phase lock condition. plus carrier interruption if center frequency should shift 100 kHz or more from assigned operating frequency. Metering of all supply and phase lock control voltages, relative ri output, and semi peak audio input voltages is provided. B-910 exciter \$1.995.00, B-910T transmitter \$2,33).00.-McMartin Industries, Inc., 605 North Thirteenth Street, Omaha, Neb. 68102

Circle 35 on reader service card LOUDSPEAKER SYSTEM. Advent 2 is housed in molded cabinet composed of inner shell of high-density polyurethane, bonded to outer shell of thermoplastic
Uses acoustic suspension woofer and 2 direct radiator tweeters. Resonance is 58 Hz ; nominal crossover point is 1500 Hz ; impedance

Everything you wanted to know about CD Ignition Systems but didn't know whom to ask.

Send for 'REE Tiger booklet (20 pages) which answers all your questions.

Name
Address
City

State
Zip

CLIP OLT 「THIS AD AND SEND TO
TRI-STAR CORP.
P. O. Box 1727 Dept. H

Grand Junction, Colo. 81501

AUTOMATIC TURNTABLEFCHANGER, model Dual 1216, has 1-piece die-cast platter that weighs 4 lbs. Same anti-skating system used in other Dual models. Other features include high-torque constant-speed motor, 6% pitch

control for all three speeds ($331 / 3,45,78 \mathrm{rpm}$), silicone damped cue control, and elevatoraction changer spindle. Pickup arm tracks as low as 0.75 grams.-United Audio Product, Inc.. 120 South Columbus Avenue, Mt Vernon. N.Y. 10553.

Circle 37 on reader service card

Burglar alarm installation is one of the most rapidly growing industries today. The tremendous publicity associated with security systems has created a widespread demand for installation of alarm systems.
A formal program has not been previously avai able to an individual seeking training in this profitable field. Now Ademco, the world's leading manufacturer of burglar alarm equipment offers you an opportunity to learn alarm installation techniques even if you have little or no experience in the alarm field. In just two short days you can be ready to install your first alarm!
Seminars are held throughout the year at Ademco's plant in Syosset, New York and at various locations throughout the country. All sessions are limited in atte idance, so reservations should be made well in advance.

LOW COST DIGITAL KITS

NEW BIPOLAR MULTIMETER: aUTOMATIC POLABITY INDICATION

Model ES 210 K
Displays Ohms, Volts or Amps in 5 ranges - Voltage from 100 Microvolts to 500 V - Resistance from 100 Milliohms to 1 Megohm - Current from 100 Nano Amps to 1 Amp $\$ 77.00$
Case ex: $\$ 12.50$ (Optional probe) $\$ 5.00$
40 MHz DIGITAL FREQUENCY COUNTER:

- Will not be damaged by high power. transmission levels.
- Simple, 1 cable connection to transmitter's output.

ES 220 K - Line frequency time base, I KHz resolution. 5 digit: $\$ 69.50$ Case extra: $\$ 10$
ES 221K -- Crystal time base. 100 Hz resolu. tion. 6 digit: $\$ 109.50$ Case extra: $\$ 10.00$ DIGITAL CLOCK:

ES $112 \mathrm{~K} / 124 \mathrm{~K} \cdot 12 \mathrm{hr}$. or 24 hr . clock $\$ 46.95$ Case extra: Walnut $\$ 12.00$ • Metal $\$ 7.50$

CRYSTAL TIME BASE:

ES 201 K - Optional addition to ES $112 \mathrm{~K}, 124 \mathrm{~K}$ or 500 K . Mounts on board. Accurate to. 002\%.

I D REMINDER:

ES 200K Reminds operator 9 min .45 sec . have passed. Mounts on ES 112 or 124 board. Silent LED flash $\$ 10.95$ Optional audio alarm $\$ 4.00$ extra.

Dependable solid state components and circuitry. Easy reading, 7 segment display tubes with clear, bright numerals. These products operate from 117 VAC, 60 cycles. No moving parts. Quiet, trouble free printed circuit

Each kit contains complete parts lisk with all parts, schematic illustrations and easy to follow, step by step instructions. No special tools required.

TAPE DECK, QD-5500 has record and playback in 4- and 2 -channel modes. Auto reverse operates for 2-channel playback and record Three-motor design, capstan motor is 4 -pole/8-pole hysteresis type; reel motors are 6 -pole induction types. Low-distortion, high linearity record/play preamp uses 3 -stage direct-coupled negative-feedback design with wide dynamic range. Four microphone and 4 line inputs allows 3 -way mixing. Has indepen-

dent 4- and 2-channel outputs; 6-position record selector switch. Cue button moves tape against playback head when machine is in either fast mode.

Transport mechanism operates via pushbuttons and electromagnetic relays with built-in delay circuit to prevent undue pressure on tape; automatic shut-off stops reel motion when tape is wound on either reel or when tape breaks; tape shifters move tape away from head surface during fast operation. Frequency response at $33 / 4 \mathrm{ips}$ of 30 to $12,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$, and 20 to $20,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$ at $71 / 2 \mathrm{ips}$. Signal-to-noise ratio is 60 dB . Wow and flutter is less than 0.12% at $33 / 4 \mathrm{ips}$, and 0.07% at $1 / 2 \mathrm{ips}$. Channel separation is better than 50 dB at $1,000 \mathrm{~Hz}, 165 / 8 \times 21 \% / 8 \times$ 105/8 in.; 53.4 lbs.: $\$ 749.50$-Sansui Electronics Corp., 55-11 Queens Blvd., Woodside, N.Y 11377.

Circle 38 on reader service card
OP-AMP DESIGNER, OA-2, is used in linear work and CMOS digital circuitry. Updated version of the OA-1 features heavier current capacities on all three power supplies (175 mA on the $+1-15$-volt supplies and 500 mA on the +5 -volt) with current limiting throughout
Has sensitive null detector and full function

generator with external frequency adjustment Interconnections are solderless, and use SK-10 socket and BP-22 breadboarding pins incorporated in the design. Kit $\$ 89.95$; assembled unit \$139.295-E\&L Instruments, Inc., 61 First Street, Derby, Conn. 06418.

Circle 39 on reader semice card
MULTI-PURPOSE RECTIFIER, series MPR Eight-pin octal base plug-in rectifiers can be programmed into various rectifier configurations such as center-taps, bridges, voltage multipliers, halfwave elements, etc

Consists of four voltage types with each type containing four independent, electrically isolated diode elements. Basic peak reverse voltages (per type number, per element) at 500 $1.000,1,500$, and 2.000 volts are available. Re ctified current output currents from 0.05 to 3.0 amperes average. All diode elements have 50 -ampere peak single cycle surge current rating. Price ($1-4$ qty.): MPR105 (500 volts") $\$ 4.85$ MPR110 (1,000 volts") \$7.35, MPR115 (1,500

volts") \$9.60; MPR 120 (2,000 volts*) \$12.25. (" = voltage ratings per element when programmed into either single-phase bridge, dual center-tap or quadrupler configurations.)-Rectifier Components Corp., 1112 Lousons Road Union, N.J. 07083

Circle 40 on reader service card

Fascinating Hobby :

VINTAGE RADIO brings you the pioneer days of wireless and radio in pictures. The collector's bible, it opens doors to a new hobby. Great browsing, too. Over 1,000 pictures, 263 pages. 1887-1929.
RADIO COLLECTOR'S GUIDE lists over 50,000 facts on 4,000 radios, 1921-32; maker, model, year, original price, style. circuit type. 264 pages.

SEND TODAY to Vintage Radio. Dep't R, Box 2045. Palos Verdes Peninsula, CA., 90274 Vintage Radio, hard cover
\$ 695 Vintage Radio, handbook $4.95 \square$ Radio Collector's Guide $3.95 \square$ Radio Encyclopedia, hard cover $12.95 \square$ Radio Fncyclopedia, handbook $9.95 \square$ Postage Paid, California residents add 5% Tax

Name

Street
City State_Zip

ENJOY THE OLD DAYS

new lit

All booklets, catalogs, charts, data sheets and other literature listed here with a Reader Service number are free. Use the Reader Service Card inside the back cover.

RADIO \& TV COIL REPLACEMENT GUIDE, NO. 174. 100-page catalog contains cross-reference directory for all known domestic and foreign color and black \& white TV sets, auto and home radios. 30,000 replacement coils for 375 manufacturers' names are listed.-Bell Industries, J.W. Miller Div., 19070 Reyes Avenue, Compton, Calif. 90224

Circle 41 on reader service card
XQ COMPONENTS CATALOG. 19-page catalog illustrates Cambion components, including terminals, jacks. plugs, handles, battery holders, IC sockets, IC breadboards, coils, chokes, and an assortment of others. Postcard on last page enables the reader to send away for the company's other catalogs. Cambion, Dept. XQ, 145 Concord Avenue, Cambridge. Mass. 02138

Circle 42 on reader service card

The practical cordless original

When the Wahl Iso-Tip ${ }^{\circledR}$ Cordless Soldering Iron was introduced, it became practical to eliminate the cord from soldering.
Weighing only six ounces, compact and fast heating, the Iso-Tip can make up to 125 electronic joints (or more) per charge Its recharging stand repowers its batteries overnight. And its worklight lets you see what you're soldering.

Accessories include carrier storage tube, auto charger, and 4 replacement tips. For all the details, see your local electronic component distributor.
Still the greatest advance in soldering since electricity.

Sterling, Illinois 61081 815.625.6525

88.014 SECURITY

Security Transmitter:

Crystal controlled, tone modulated, R.F. device which contains: crystal, audio+R.F. transistors, reed switch, audio+R.F. coils, etc.
\$1.25 each
2/\$2.00
4 oz . Shp. Wt.

Super Het. Control, Receiver:

Crystal controlled, with re-trans mitter. Contains timing circuits, electronic siren, 12 volt power supply with relay output. Operates on 110 VAC or 12 VDC .
$\$ 5.00$ each
2/\$7.50
$31 / 2 \mathrm{lb}$. Shp. Wt.

Remote Receiver:

Crystal controlled receiver includes timing circuit, power supply with relay output. Operates on 110 VAC or 12 VDC .
\$3.50 each
2/\$5.00
31/4 lb. Shp. Wt.

> All equipment sold as is

Include sufficient postage, excess refunded. No cash or C.O.D., please. California residents add sales tax.

$$
\begin{gathered}
\text { R. A. G. S. } \\
666 \text { Willow Street } \\
\text { San Jose, California } 95125
\end{gathered}
$$

Circle 27 on reader service card

HALF PRICE SALE

 5 DIGIT FREQ. COUNTER$\$ 189.95$

WHILE THEY LAST!!

WESTON 1250 FREQUENCY COUNTER AT A NEVER TO BE REPEATED PRICE. NEW UNITS WITH ONE YEAR WARRANTY. 5 digit LED readout, 5 Hz to 32 MHz frequency range with 250 mV sensitivity and $\pm 10 \mathrm{ppm}$ crystal controlled time base. All solid state units. AC powered, tilt stand - carrying handle. For Telephone Orders Call Toll Free 800-527-4642
Fluke PM-250 prescaler available to increase coverage to 250 MHz with no loss in accuracy. ORDER PM-250 at $\$ 135.00$. ORDER 1250 at $\$ 189.95$ plus $\$ 2.75$ shipping \& handling (Residents of Illinois, California, Texas \& New Jersey add 5% state tax).

MARCONI

(continued from page 49)
most easily in the presence of heavy atmospheric noise

On December 10th, an antenna was sent up. carried by a large kite, in preparation for the tests which were to commence the following day. The operation went smoothly On December 1lth, the weather deteriorated. The wind increased steadily, and by mid-morning a fall gale was blowing. Attempts to send an antenna aloft met with failure and a kite and balloon were lost in the severe winds that lashed the hillside; no signals were heard that day

The next day. December 12, 1901, the
weather continued harsh, and a full gate continued to rage. In spite of the weather, an antenna carried by a kite was sent to an altitude of 400 feet. and Marconi began his listening vigil in the hospital room. But the howling winds made the motion of the kite highly erratic. dipping and soaring like a terrified birl. These sporadic movements altered the angle the antenna made with the earth, as a result of which the characteristics of the antenna were in a constant state of flux. Marconi heard nothing.

He had suhstituted a telephone receiver for the Morse inker which he had been using. The latter would have given Marconi a printed record of the experiment, hut was not as sensitive to signals as the human ear.
C159
TUBE
BONANZA!
20
assorted rubes for $\$ 1.00$
Untested (some will be
good, some bad).

TAKE A CHANCE FOR $\$ 1.00$ $\$ 1.00$

All types, SPDT, DPDT, etc. C106
TRAN SISTOR
REPAIR KIT
$\$ 100$
Includes resistors, condensers, transistors, transformers and various \& sundry parts used to repair transitor radios, walkie-talkies, tape recorders. etc. \qquad

PRECISION

DUAL
POTENTIOMETERS
25 for $\$ 1.00$
Assorted ohmages. Originally for Hi-Fi, Stereo and TV.

C123

C123
CoAHEA oficineza
TIE LUGS
50 for $\$ 1.00$
From 2 lugs up
C143

misceluaneous
miniature
tuning
METERS
2 for $\$ 1.00$

C190
MONEY BACK GUARANTEE Terms: Minimum order $\$ 4.00$. In clude postage. Either full payment with order or 20% deposit, balance C.O.D.
free catalog

VOLUME CONTROLS 20 for $\$ 1.00$
Wire wounds \& carbons, up to meg, some with switches.

C126

10 SHIELDED WIRE ASSEMBLIES for $\$ 1.00$ With RCA molded plug at one end \& tinned wire at the other. C145
WRITE FOR
free value packed CATALOG

BONUS

FREE CAPACITOR KIT With Every \$5 Purchase

DISC CAPACITORS

Assorted capacitances from . 0001 to. 1. Different voltages, mostly 600 volts N.P.O. N750. C140

mINIATURE TRAMSISTOR ELECTROLYTES 13 for $\$ 1^{00}$
Some axial leads, some vertical mount, mixed capacitances and mixed capacitances and mixed voltages. \qquad C121

RADIO \& TV Receiving

 Any 3 for $\$ 1.19$1L4, 155, 1T4, 1U5.
3CB6. 3DG4, 3EH7, 3EJ7.
$3 \mathrm{KT6}, 3 \mathrm{~S} 4,3 \mathrm{~V} 4,4 \mathrm{BC5}$.
$4 B N 6,4 B \cup 8,5 \mathrm{CZ5}, 5 \mathrm{~J} 6$.
5T8. 5U4. 6AC7. 6AF4.
6AG5. 6AJ8. 6AK5. 6AKG. 6AL5. 6AQ5, 6AX4, 6B10, 6BA6, 6BAl1. 6BL7 6BL8. $6 \mathrm{BN4}$. 6 BNI 1 6BQ6. 6BS3, 6BU8. 6BW4 6BZ6, 6CB6, 6CD6. 6CF6, 6CG3. 6CG8, 6CJ3. 6CM3, 6CQ4, 6DA4. 6DE4. 60G6, 6DK6, 6DN7, 6DT6, 60W4 6EA7, 6EH5, 6EH8, 6FD7. 6FM7, 6GF7, 6GH8, 6GK6. 6GL7, 6GM6, 6GN8, 6GU7 6GV5. 6HE5. 6HJ7, 6 HJ 8 . 6HS8, 6J6, 6JN6. 6JW8, $6 \mathrm{~K} 7,6 \mathrm{~K} 11,6 \mathrm{KM6}$. 6 KY 8 6LF8, 6LY8. 6SA7. 6SH7 6SN7, 6SV7, 6T8, 6T10, 6V4, 6W4, 6X4, 7GS7. 8CM7, 8CN7, 8EB8, 8SN7 12AD6, 12AE7, 12 AU7. 12ATV, 12AU6, 12AV5 12AX4, 12BA6, $12 B E 6$ 12BH7. 12BY7, 12C8, 12CN5, 12DS7. $12 R 5$. 12SC7. 12SN7. 15KV8. 18FW6, 19T8, 20EZ7, 22BW3, 35C5, 35Y4, 36AM3. 50 B 5.

CARBON RESISTORS 175 for $\$ 1.00$

Most with cut leads (long enough for soldering), some pre-formed. Most all 5% or 10%.

Marconi had also replaced his syntonic re ceiver with an older model. Different types of cohere were employed; one of these was to so-called ltidian Navy coherer which had heen developed by a lieutenant in the Itatian Nasy. Louigi Solari; it consisted of a glass tube with a plug of iron at one end and carbon at the other. with a globule of mercury hetween. The device is of particular historic interest because it appears to be a forerunner of the semiconductor rectitiers brought into use nearly half a century later. Semiconductors employ dissimilar materials to rectify current. and the mercury. coated by an oxide layer. constituted the elements of the rectifier.
Marconi listened intently, growing more discouraged by the moment. Suddenly, at 12:30 PM on December 12th, he heard the signals! Uncertain at first. he continued to listen. Soon. there was no doubt. The faint but unmistakable signals were there, and Kemp was shortly to confirm their presence. The series of dots could only be coming from Poldhu. some 2000 miles to the east. Marconi's second assistant. Paget. was ill on December 12th, and was not present: he would regret the illness the rest of his life.

On the following day, signals were heard again faintly for a brief period. in spite of a howling storm that raged. By December 14th, however. it had become apparent that obtaining evidence on the inker was not fasible with the equipment at hand, and that no better receiving apparatus could be erected because of the terrible weather conditions. Marconi then had to decide whether to announce the results to the world. There

Circle 28 on redaler service card
were atter all, no objective witneses to the accomplishment. After cabling London with the results, Marconi ddvised the press on December loth.
Marconi was immediately involved in several vtormy controversies. On December 16th, the Angle-American Telegraph Company, which had a monopoly on message-carrying activities throughout Newfoundland, threatened legal action if the experiments were not terminated at once. Marconi decided not to contest the action. which could have been costly and timeconsuming. The United States or Canada had no such monopolies in existence, and since no signtficant outlay for receiving equipment had been made in Neufoundland, there did not seem to he much purpose in fighting.
The second, and more far-reaching. comtroversy involved the aceuracy of Marconis report. In the athence of proof of his clam. many prominent scientists throughout the world expresed doubt ahout what he actually heard, helieving that what he thought were signads could hate heen cansed hy heavy static.

It hould be pornted out that to this dity, a number of responsible and respected cienlists belleve that no signad were actually heard on December 12, 1901, and that the जtory was a "myth." Several reason, have been given to support the contention, the most amportant of which were the primative nature of the receiving equipment and the wavelength of the signal. Although the exact wavelengh was not measured at the tme of the experiment, Mareoni himself hats stated it was ahout 366 meter ($820 \mathrm{kH} /$).

Our 21 st year of service to the World's finest craftsmen and technicians.

For faster service USE CODE

是

HOW TO increast Your EARNING CAPACITY IN JUST 6 WEFKS

Here's how our Digital Circuit Design course hepped Mr. Wright: your course helped me immeasurably. I recently applied for a new position and got it. Your special training is now helping me fulfill my responsibilities on the job.'

Learn advanced CIRCUIT THEORY

in your spare time; without higher math!
THE CENTER understands and anticipates your needs for working in electronics today. Our courses get results for you quickly, with convenient home study. All courses are 100% tax deductible. You take no risks. You receive everything on a 5 day FREE TRIAL basis. Decide your future, act today!

SEND FOR FREE INFORMATION TODAY!

Send me complete information on the following
\square Digital Circuit Design \square IC Logic Design \square Power Supply Design \square MOS/FET \& J/FET Circuit Design \square UJT Circuit Design

Name
Age
\qquad

City

Dept: RE374
Phona: 513/296-1020 2876 CULVER AVENUE DAYTON, OHIO 45429

Transistor Analyzer model 212

Factory Wired \& Tested- $\$ 24.50$
Easy-to-Assemble Kit-- $\$ 16.00$
YOU DON'T NEED A BENCH FULL OF EQUIPMENT TO TEST TRANSISTOR RADIOS! All the facilities you need to check the transistors themselves - and the radios or other circuits in which they are used - have been ingeniously engineered into the compact, 6.inch high case of the Model 212. It's the transistor radio troubleshooter with all the features found only in more expensive units. Find defective transistors and circuit troubles speedily with a single, streamlined instrument instead of an elaborate hook-up.
Checks all transistor types - high or low Checks all transistor types - high or power. Checks DC current gain (beta) to
200 in 3 ranges. Checks reakage. Universal test socket accepts different base configurations. Identifies unknown tran. sistors as NPN or PNP.

EMC, 625 Broadway, New York 12, N.Y.
Send me FREE catalog of the complete value-packed EMC line, and name of local distributor.

Dynamic test for all transistors as signal amplifiers (oscillatnr check), in or out of circuit. Develops test signal for AF, IF, or RF circuits. Signal traces all circuits.' Checks condition of diodes. Measures supply voltages on 12 -volt scale. No ex. ternal power source needed. Measures circuit drain or other DC currents to 80 milliamperes. supplied with three exterminamperes. ipplicuit testing and pair of test leads for measuring voltage pair current. Comes complete with instruction manual and transistor listing.
 Kleps 40

Clever Kleps

Test probes designed by your needs - Push to seize, push to release (all Kleps spring loaded).
Kelps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4^{\prime \prime}$ long. $\$ 1.39$ Kieps 20. Same, but 7 " long.
Kleps 30. cepts banana plug or bare lead. $6^{\prime \prime}$ long. $\$ 1.79$ Kleps 40. Completely flexible. 3-segment automatic collet firmly grips wire ends, PC -board terminals, connector pins. Accepts banana plug or plain wire $6 \frac{1}{4}$ " long. $\quad \$ 2.59$ KIeps 1. Economy Kleps for light line work (not lab quality) Meshing claws. $41 / 2^{\prime \prime}$ long.
\$. 99
Pruf 10. Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long. $\$.89$ All in red or black - specify. (Add 50c postage and handling). Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components.

82 A ballable through your local distributor. or write to:
RYEINDUSTRIES INC. 127 Spencer Place, Mamaroneck. N.Y. 10543 In Canada: Rye Industries (Canada) Ltd. Circle 62 on reader semice cord
next month

MAY 1974

- New Projection Color TV

This set, available now, delivers a color TV picture that measures 4 feet by 5 feet. It costs $\$ 2500$. We show how it works and what it will be like to service.

- Inside MATV Antennas

Forest Belt tells what's new and what's different in these special-purpose TV antennas.

- What's New In Automotive Electronics New circuits and devices are common in today's automobile. Both add-on and orginal-equipment items are described in this article.

- Designing Active Bandpass Filters

 Don Lancaster shows how to design an inductor-free high-Q bandpass filter circuit. Use it for electronic music in percussion and bell circuits, as well as for audio filtering.
- New Noise-Reducing Circuit For FM Tuners

It's in the new line of Pioneer equipment and it works. Get the details in this story by R-E's Contributing High-Fidelity Editor

PLUS:

Appliance Clinic
Service Clinic
R-E's Transistor Replacement Guide

Lend a Hand And a Home

If your family cares about the world and its people...

If you live in a community that shares that concern...

Then let a student from another culture understand you and your life better.

Invite an AFS scholar into your home.

AMERICAN FIELD SERVICE
INTERNATIONAL SCHOLARSHIPS
313 East 43rd St., New York, New York 10017

MARCONI

(continued from page 80)

[^3]
If You Work In Electronics:

GRANTHAM OFFERS YOU College-Level Training

 and a college degree.Electronic Circuit Design, Engineering Analysis (including mathematics thru calculus), Classical and Solid-State Physics, Engineering Design, etc., etc., are all part of the Grantham home-study degree program in Electronics Engineering.

PUT PROFESSIONAL RECOGNITION IN YOUR CAREER.

By adding collegelevel home training and a college degree to your experience, you can move up to greater opportunities in electronics.

Grantham offers the A.S.E.T. degree by correspondence. After earning this degree, you may continue with additional correspondence plus a 3-day residential seminar and certain transfer credits, to earn the B.S.E.T. degree. Then, the B.S.E.E. is available through further study.

GRANTHAM SCHOOL OF ENGINEERING 2000 Stoner Ave.. Los Angeles CA 90025 - Telephone (213) 477-1901

Worldwide Career Training thru Home Study

 Mail the coupon below for free bulletin.

Heathkiif Digital

Digital technology comes to TV with the new Heathkit GR-2000 Color TV. It has on-screen digital channel numbers and a digital clock - programmable digital channel selection, all electronic varactor tuning, and an IF that never needs alignment! So advanced, it's like nothing you've ever seen before.

GREAT VALUES

 CANADIANS: Ordering is easy - we do the paperwork - try a small order

SHANNON MYLAR RECORDING TAPE

WESTINGHOUSE ALL TRANSISTOR HOME/OFFICE MESSAGE CENTER Leaves messages for other for replay ... Built in speaker/microphone for talk-into convenience.... Records up to 3 minutes of messages . Illuminsted signal shows when a message is waiting. Control signal shows when a message is waiting. Control adjusts playback volume without affecting recording

M

$\square \square \square \square \square$

WESTINGHOUSE ALL TRANMOR HOME/OFFIC

Leaves messages for other for replay, ., Built in cords up to 3 minutes of messages . Illuminsted signal shows when a message is waiting. Control

CASSETTE C-60 59	
8 -Track - 64 Min 1.29	
8-Track - 80 Min........... 1.59	
${ }^{8}$-Track - Cleaner	- 1.49
3" TAPE REEL	
311/4" TAPE REE	L 09
5" TAPE REEL	
7" TAPE REEL	

color convergence assembiy ${ }^{2} 2^{49}$
COLOR IV REGTFEEA 15
Color-T CRT SOCKETS wimd lyats s

D 70 colot
TNER
COLORBURST QUARTZ-CRYST AI 4
kleps. ", Glever" test proons of way platere- -
atcoummodates
$\square \begin{array}{r}20 \\ 20 \\ 20\end{array}$
${ }^{20}-$ ${ }^{20}$
15- moloen tubular capacitions: 1
[1 1
$\square$$\square{ }^{4}$9

DISCOUNT TEST EOUIPMENT SPECIALISTS

B $[7$
 जाज०
 SEN○○円R
 Nosmy

COMPLETE LINE OF ELECTRONIC SUPPLIES
ICC/Mullard \& Raytheon Tubes Telematic Test Rigs TV Tuner Subber
FREE CATALOG FORDHAM
Radio Supply Co., Inc.
558 Morris Ave., Bronx, N.Y. 10451 Tel: (212) 585-0330

Cirrle 68 on reader service card

ELECTRONIC

 TECHNICIANS!Raise your professional standing and prepare for promotion! Win your diploma in

ENGINEERING MATHEMATICS

from the Indiana Home Study Institute

We are proud to announce two great new courses in Engineering Mathematics for the electronic industry.
These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men, from all walks of life. on mathematics, and electrical and electronic engineering.
You will have to see the lessons to ap-
preciate them!
NOW you can master engineering mathematics and actually enjoy doing it? WE ARE THIS SURE: you sign no contracts-you order your lessons on a money-back guarantee
fied ylain language, if you aren't satisfied your don't pay, and there are no strings attached.
Write loday for more information and
your outline of courses your outline of courses.
You have
You have nothing to lose, and every-
thing to gain!
The INDIANA HOME STUDY INSTITUTE

Dept. RE-4, P.D. Box 1189, Panama City, Fla. 32401

He 's Back

Hire the Disabled Veteran

TUBES

SAVE money on parts and transmitting receiving tubes, foreign-domestic. Send 25 c for Giant Catalog. Refunded first order UNITED RADIO COMPANY, 56-R Ferry Street, Newark, N.J. 07105

RECEIVING \& industrial tubes, transistors. All brands-biggest discounts. Technicians, hobbyists, experimenters-request free giant catalog and save! ZALYTRON, 469 Jericho Turnpike. Mineola, N.Y 11501

ELECTRONIC ENGINEERING \& INSTRUCTION

TV tuner repairs-Complete course details, 12 repair tricks. Many plans. Two lessons, allfor \$1. Refundable. FRANK BOCEK, Box 3236 (EnterRefundable. FRANK BOCEK,
prise). Redding. Calif. 96001 .
ELECTRONICS training. College level course. FCC Iicense, Broadcast Engineering, Satellite Communications. Home study. Free brochure GTI, 5540 Hollywood BIvd.. 10, Hollywood. Calif. 90028
CALCULATOR owners: use your $+-x$ calculator to compute square roots, cube roots, $\sin (x), \cos (x), \tan (x), \arcsin (x), \arccos (x)$. $\arctan (x)$, logarithms. exponentials, and more! Quickly. accurately, easily! Send today for the improved and expanded edition of the first and best calculator manual-now in use throughout the world ... only $\$ 2.00$. Unconditional money-back quarantee-and fast service! MALLMANN OPTICS AND ELECTRONICS, Dept. 58,836 South 113. West Allis, Wisc. 53214

BUSINESS OPPORTUNITIES

START small, highly profitable electronic production in your basement. Investment, knowledge unnecessary. Postcard brings facts. BARTA-AD, Box 248 , Wainut Creek. Calif. 94597 BUILD your own speaker systems. Lowest wholesale prices on famous brands. Write for 176 page catalog. McGEE RADIO COMPANY, 1901 McGee Street, Kansas City, Mo. 64108

FOR SALE

LOGIC probes from $\$ 9.95$. Free catalog ELECTRO INDUSTRIES, 4201 Irving Park Chicago, III. 60641
NAME brand digital test equipment, discount prices. Free catalog and price list. SALEN ELECTRONICS, Box 82, Skokie, III. 60076
INTEGRATED circuit bargains- 723 voltage regulators 10/\$5.00. 7441 Nixie drivers 10/\$7.00. 7490 decade counters 10/\$8.00.74193 up-down counters $10 / \$ 12.00$. 8 W -rms integrated circuit stereo amplifier kit \$13.50. 1A-400PIV epoxy rectifiers 50/\$3.00. Large light-emitting diodes 12/\$2.00. Large MAN-17-segment LED readouts $3 / \$ 5.00$. Large multicolor LED's $2 / \$ 1.00 .10 \mathrm{lbs}$ aluminun chassis/heat sink stock $\$ 3.50$. Free bonus surprise. ELECTRONIC UNLIMITED, P.O. Box 91. Olney, Md 20832

NEW FM deviation meters \$75.00. Free information. Write ECM, 412C N. Weinbach, Evansville indiana 47711.

TOOL KITS

FOR THE FIELD ENGINEER

More than 100 fine tools used for servicint in the field. Used on communications equrment, business machines, computers, all kinds of electronic systems. All tools and VOM tester are furnished in delixe attache case.

FOR THE ELECTRONIC TECHNICIAN

Industrial electronic technician kit JTK-2 includes 44 most-Wanted tools used for making breadhoards and mock ups. Write for list of included items.
free Catalos
Includes 72 pages of hard-to-find tols used by electronic technicians, instrument mechanics, engineers, scientists. Over 1700 items listed. Write today.

(3) JIENS

Circle 70 on reader service card

FREE BURGIARFIRE ALARM CATALOG 400 PRODUCTS

Full line of quality systems and supplies for professional or electronic hobbyist. Prompt delivery, quantity prices.
mountain west alarm 4215 n. 16th st. phoenix, az. 85016

market enter

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). $\$ 1.00$ per word . . . minimum 10 words.
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) $70 ¢$ per word no minimum.
FIRST WORD and NAME set in bold caps at no extra charge. Additional bold face at $10 \mathbb{C}$ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 10\% discount on 12 consecutive insertions, if paid in advance. Misleading or objectionable ads not accepted. Copy for June issue must reach us before April 1 .

EXPERIMENTERS regulated power supplies $5 \mathrm{Vdc}-1 \mathrm{~A}$ integrated circuit supply kit $\$ 13.00$. $5 \mathrm{VdC}-10 \mathrm{~A}$ integrated circuit supply kit $\$ 36.50$; (remote current sense $\$ 42.50$.) Adjustable dual operational amplifier supply kit (provides two independent 1 -amp regulated $5-20 \mathrm{Vdc}$ supplies) only $\$ 19.50$. Fixed dual operational amplifier supply kit $\$ 13.50$ (specify $+1-15 \mathrm{Vdc}$ or $+1-12 \mathrm{Vdc})$. 12 Vdc 40 -ampere, voltageregulated power supply kit $\$ 45.00$. Complete kits including printed circuit board, chassis. heat sinks, transformers, regulators. hardware. Include postage. ELECTRONICS UNLIMITED, P.O. Box 91. Olney, Md. 20832

TWENTY disc, or 10 bar magnets. $\$ 1.00$. MAGNETS, Box 192-E, Randallstown. Md. 21133
GIANT 126 page Canadian surplus catalog. \$1.00. ETCO ELECTRONICS, Dept. RE, Box 741 . Montreal, Canada.

COMPUTER KEYBOARD W/ENCODER $\$ 35$ Another shipment just received. Alpha-numerics keyboard excellent condition. Once again we expect
an early selout. Price of $\$ 35$ incudes prepaid ship. an early selout. Price of $\$ 35$ incudes prepaid ship.
ment in the US and shipment made within 24 hours of receipt of ofder.
JUNK KEYBOARDS as above, "as is" for parts $\$ 7.00$

COMPLETE MEMORY SYSTEM $\$ 150$

Measures $12 \times 7 \times 1$ inches. Utilizes TTL IC's. 10240 memory cores. 9 installed sense amps, addressed as 1024 locations. $1 / 0$ lines include 9 data-in. 9 data-out, 10 address-in, powering status and control. 'Only 40 systems on hand. Schematics included.
\#DCU \$150 pp

AUTOMOBILE REVERB $\$ 7.00$

Brand new fully assembled, ready to install in your car to give 3rd dimension concert hall effect. Complete with instructions, rear seat speaker, grill, wires, plugs.
\#05 $\$ 7.00$

8 TRACK STEREO TAPE DECK $\$ 14.00$

With built-in stereo pre-amp, 115 volt drive motor, channel indicator lamps. Unused, original boxed, less cabinet. Customize your stereo music center with one of these tape decks.
\#46 \$14.00
Please add postage for above.
JOHN MESHNA JR.
PO BOX 62, E. LYNN, MASS. 01904

DIGITAL electronics! Complete schematics, parts lists, theories-Discrete Component Digital Clock. $\$ 3.00$. Increase technic al competence, hobby skills - Complete course in Digital Electronics is highly effec tive, $\$ 10.00$. Free literature. DYNASIGN, Box 60R2. Wayland, Mass. 01778 LOUDSPEAKERS - BOSE 901 replacements. $\$ 7.98$ postpaid. Quantity discounts. Money back guarantee. AURATONE, Box 580-3B, Del Mar, Calif. 92014
RADIO \& TV tubes 36c each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, Calif. 92105
CANADIAN'S free catalog LED's, IC's, transistors, SCR's diodes, parts. CORONET ELECTRONICS, 649A Notre Dame West, Montreal 101, Que., Canada
UNUSUAL numerical readout projects catalog: Free! GBS, Box 100M, Greenbank. W.Va. 24944° JAPANESE transistors, wholesale prices, free catalog. WEST PACIFIC ELECTRONICS, Box 25837, W. Los Angeles, Calif. 90025
SEMICONDUCTOR and parts catalog. J. \& J. ELECTRONICS, Box 1437, Winnipeg. Manitoba, Canada

Mail Coupon for Your FREE Copy, Dept. RE

1016 E. EUNEKA - Box 1105 : UMA, OHIO . 45802

Circle 79 on reader service card

Disi-Hey
Shoulicy Electoonis Componest.

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS

\qquad

7400 N	32 c	7446 N	\$1 30	7496N	\$1.20
7401 N	32 c	7447N	51.30	74107N	550
7402 N	326	7948 N	51.35	74121 N	70 c
7403 N	32.	7850 N	325	7.122N	720
7404 N	35 c	7451 N	37 c	74123N	31.11
7405 N .	35 c	7453N.	32 L	74141 N	51.81
7406 N	52 c	7450 N	32 c	74150 N	81.56
7407 N	526	7as9	325	74151N	51.20
7408N	3 bc	7960 W	32 c	74153 N	51.58
7409 N	36 c	7470 N	360	74154 N	52.25
7410 N	32c	7472 N	$40 \times$	74155 N	\$1.46
7411 N	3 Se	7473 N	52 t	74156N	$\$ 1.17$
7413 N	${ }_{63} \mathrm{c}$	747 NN	52 x	74157N	51.50
7416 N	50 c	7475N	85 c	74158 N	\$156
7417 N	50 C	7476N	of	74160 N	51.95
7418 N	355	7480 H	74 c	74161 N	51.95
7480 N	32 C	7482 N	11.02	74162N	$\$ 1.95$
7423 N	75.	7483 N	\$1.58	74163 N	\$1.95
7426 N	306	7886 N	600	74164N	81.95
7430k	32 c	7489 N	\$4.50	74165N	12.48
74.37 N	515	7490 N	856	74160 N	52.03
7433 N	516	7491N	51.37	74180 N	81.20
7440 N	32 C	7492N	85 c	74181N	53.38
7441N	51.45	7493 N	85 c	74182 N	51.17
7402 N	31.20	7494 N	51.20	74192N	5180
7445 N	51.62	$7495 \mathrm{~N}^{\prime}$	\$1.20	74193N	\$1.80
Discounts offered in quantities				7,4198N	\$2.78
of 100 pes it	ed lots			74199 N	. 52.78
LINEAR INTEGRATED CIRCUITS					
NE555V Miniolp		51.00	723C DIP		53.15
NE565A DIP		53.57	781 C Minimap		${ }_{60}$
NE567V MinibiP		$\$ 357$	747 CDP		57.10
NS5S8V Minidip		958	748 C Minidip		bor
709C Minilip.		44 c	Quantity Discoun		

IN4001	50 PIV	10/51.00	100/3 7.00 .	1000/5 00.00
IN4002	100 PIV	9/51.00	100/5 800.	1000/5 70.00
IN4003	200 PIV	$8 / 51.00$	$100 / 510.00$	1000/585.00
IN4004	400 PIV	7/151.00	100,51700	1000/5 95.00
IN4005	600 PIV	7/51.00	100\% 31200	1000/5105.00
INa00	800 PIV	6.51 .00	100/51300	1000/\$115.00
1N4007	1000 PiV	. $5 / 51.00$. 100 \$34.00	1000/\$120.00
MOLEX IC SOCKET PINS				
100,51.00	185 80		260	500154.20
700. 55.80	00/58.20		ddn	1000/57.50

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad CALL 218.881-0674

DIGI-KEY

Box 126 Thief River Falls, MN 56701
Cirele $8 /$ on reader servire card

Ken Fransen is using his electronics training where it really counts.

Helping to save lives in the U.S. Coast Guard.

It's up to Ken to keep sophisticated electronics communications equipment in top condition.

He's part of our lifesaving team. We count on Ken and need more people like him.

You may or may not have electronics training. If, like Ken, you have training, we'll put you to work fast, on a rewarding job with responsibility and challenges. If you don't have training, we'll train you.

Say your experience goes no further than building a crystal radio set. If you have an aptitude for electronics and qualify, we'll guarantee you 25 to 38 weeks of school and turn you into a seasoned professional who'll be able to troubleshoot the most complex electronics equipment. You'll study everything from theory and principle to practical application.

Those of you who already know your way around electronics systems may qualify for our advanced promotion program. After only ten weeks, you'll be promoted immediately to a higher pay grade (up to 2nd class petty officer with pay of over $\$ 400$ a month, plus food, housing and medical care). And you may qualify for even more advanced training.

Either way, your job as a Coast

Guard electronics technician will give you a broad range of experience. Using the most modern diagnostic tools, you'll maintain, repair and calibrate the latest electronics equipment, including LORAN transceivers, computer controlled transmitters, solid state equipment and AM, FM and SSB transceivers.

You might even qualify to help design, test and evaluate new equipment or prototype models in our research laboratories, or work on cesium and rubidium atomic clocks.

You'll be doing plenty for yourself, too. The training alone is worth thousands of dollars, and the skills you learn can lead to valuable, sought-after jobs in both the Coast Guard and civilian life.

What's more, the Coast Guard offers you a combination of pay and benefits most private companies can't match. (For more about our package of benefits, read the attached card.)

Find out more about a rewarding career in electronics. Mail us the card today.

> Help others/Help yourself. Join the lifesavers. The Coast Guard.

CONVERT TV TO FT. WIDE SCREEN! Easy Do-It-Yourself Kit
 Kit conadins detailed plans, inst, and cision Lens System. Only $\$ 1295 \mathrm{ppd}$
or write for free illustrated details The Macrocoma Co., Dept. FD Washington Crossing, PA 16977

Technical Excellence in Electronics.

ELECTRONIC music synthesizer. Printed circuit boards and kits. Satisfaction guaranteed Free information. UNDERWATER LABORATORIES, Box 25066, Northgate Station. Seattle. Wash. 98125
ELECTRONIC slot machine type game. Plans \$500. KAB. 1923 Fern. Royal Oak, Mich. 48073 BURGLAR-fire alarm catalog. Wholesale supplies for home do-it-yourselfers. From the sim plest to professional-alarm parts and tools. Free catalog. WHOLESALE SECURITY DE. VICES, 2145 West 8 Mile, Detroit, Mich. 48219 AIRCRAFT type headset with tube loaded mike for CB walkie-talkies only $\$ 9.95$, literature 25 c refundable. Dept R, CAMPBELL \& COMPANY, Box 91654, Los Angeles. Calif. 90009
MANUALS for Govt. surplus radios, test sets, scopes. List 50c. BOOKS, 7218 Roanne Drive Washington, D. C. 20021
TRANSISTOR curve tracer, $\$ 10.95$, guaranteed one year APPALACHIAN TECHNICAL, Box 8512. Asheville, N.C. 28804

1/2-WATT resistors all values 2 cents, minimum \$2.00. LECTRONIX, Box 1067, Southgate, Mich. 48195

U.S. GOV'T ELECTRONIC SURPLUS

- Nationally Known-World Fameut SURPLUS CENTER offers finest, most expensive, Goyernment surplus electronic units and

IBM COMPUTER POWER SUPPLY

- Finnst translomers, rilters, transistor load

Cost Goy't
Over $5 s 00.00$
$\$ 26.95$

STANDARD DIAL TELEPHONE

MAGNETIC DIGITAL COUNTER(12 to 18 -VDC)

AC PROGRAM TIMING CLOCK

 SNAP AROUND VOLT-OHM-AMMETER

ENGINEERING $\$ 10.79$ (ousside U.S.A

	ALL ITEMS SHIPPED F.D.B. LIMCOLN, ME日R Order Direct Fiom Ad. Money Back Guarantice.	
	SURP	S CENṪER
	OEPT. RE-0:44	LIMCOLM, NEER. 68504

INTERNATIONAL ELECTRONICS UNLIMITED

TTL

 APRIL SPECIALS

CMOS					
74 CoO	S 85	74 C 76	51.70	74 Cl 163	\$3.25
${ }^{744002}$	85	${ }^{4} 4 \mathrm{Cl} 107$	1.50	$74 C 164$	3.50
${ }^{74} \mathbf{C O 4}$	95	74 Cl 151	2.90	$74{ }^{\text {C173 }}$	2.90
74 C 10	85	74.154	3.50	74 C 192	3.25
74 Czo	85	74.157	2.25	74 Cl 193	325
${ }^{74442}$	${ }^{2} .15$	$74 \mathrm{Cl160}$	3.30	74C195	3.00
74473	1.70	$74 C 161$	3.25	$80 \mathrm{C97}$	1.50
$74 \mathrm{C74}$	1.50	74×162	3.25		

Specity Specs Required with order

4000 Series - RCA Equivalent

${ }_{7}^{7438}$	Oiad 2 inpur NANO butfer	${ }_{\text {ckis }}^{3 / 51.100}$
7360	Dual 4 ineut texan	S1.00
${ }_{7}^{7496}$	Dual - Stiof flop	S, 45
74121	Seemat counter	
	IMIN OIP	
	2 watt audio amplifier	cos.

CMOS (DIP)		
74C00	Quad 2-input NAND gate	\$. 79 ea.
74 CO 2	Quad 2-input NOR gate	.79 ea.
$74 \mathrm{C107}$	Dual J-K flip-flop with clear	1.25 ea.
74C160	Decade counter with sync. clear	2.75 ea.
4000 Series (DIP)		
4001	Quad 2-input NOR gate	. 59 ea.
4009	Hex buffer (inverting)	. 89 ea.

512 Digital clock chip - 28
in - any readout -
4 MAN3M LED
Complete with data
$\$ 11.95 /$ set
Calculator Chips

5001 LSI (40 pin) Add, subtract. multiply \& divide 12 digit	
Data supplisd with chip	\$6.95 ad.
Datia only. Ratundable w/purchase	1.00 ea.
5002 LSI Similat to 5001 except designed for battery power	
Data supplied with chip	\$8.95 8.
Data onir.Refundable w/purchase	1.00 ad
005 LSI (28 punt Full four function memory.	
12 digit display and calc. 7 segment multiplexed output	
Data supplied with chip	\$10.95
Data oniy-Refundable w/purchase	1.00

MM 5311 (28 pin) Any readout 6 digit BCD with spec. sheet MM 5312 (24 pin) Any readout 4 digit ipps BCD with spec. sheet MM 5313 (28 pun) Any readout 6 digit ipps BCD with spec. sheet MM 5314 (24 pin) LED-incandescent readout 6 digit with spec sheet

Untested IC's

UNTESTED MOS			
Mm1403	1024. bit dynamic shifu register	Dip	65 ea.
MM1404	1024 bit dyramic shift register	DIP	65 ва
MM5013	1024 bit dyramic shift		
	register/accum.	DIP-TO-5	55 ea.
MM50 16	512 bit dy ramic shifi 1egister	DIP-TO-5	25 ed
MM5019	Dual 256 bit mask peos. shilt register	T0.5	25 ea
MM5050	Dual 32 bin state shift register	TO. 5	35 ea.
MM5054	Dual 64/72/80 bit static shit register	DIP	35 ea.
MOS Shite Register, 2500 Series			
25022506250925102511251825192521252			
Untested	conds		4/1.00
Grab Bag Specials			
15 Astorted rTL's (dips)			51,00/bad
25 Assorted DTL's (dips)			51.00/bag

ON ORDERS OVER \$25.00 DEDUCT 10\%

Satisfaction guaranteed. All items except as noted are fully tested. Minimum order $\$ 5.00$ prepaid in U.S. and Canada. Calif. residents add sales tax. Orders filled within three days from receipt.

INTERNATIONAL ELECTRONICS UNLIMITED
P.O. BOX $1708 \quad$ Monterey, Calif. 93940
Monterey, Calif. 93940

NEW LOW COST DIGITAL CLOCK/ALARM
CALENDAR CLOCK KIT

This is an updated ve sion of our popular low price clock kit. In ad dition 10 the former features which were a decorator walnut case six digit blue-green dis play, the clock now tea tures 28/30/31 day ca endar, 12/24 hour clock $50 / 60 \mathrm{~Hz}$ Operation, setting and 24 hour alarm, snooze alarn, 50, any counter (time, alarin. calendar, hour easy, since a separate control of the has been provided. The setin the contents of any other counter
\square New Clock/Alarm/Calendar Clock Kit. Available Jan 1974. Send $\$ 10.00$ deposit to insure eatly shipment. Wiil be shipped C.O.D. for balance of $\$ 59.50$ to make up full purchase price of $\$ 69.50$
\square "OLD" Clock Kit. Uses 5311 Clock Chip does not have Alarm/Calendar teatures indicates hours. minutes, sec ands, Available now $\$ 47.50$ UNIVERSAL DIGITAL CLOCK - TIMER

CH ALARM KIT
This new kit has so many fealures and applications. we hardly know where 10 stait. To sum marize the applications:
-The unit can be used as a conven tional clock. eithe from internal batteries, or from AC adapter. Makes a excellent travel clock

The alarm feature can be set at any time, and will generate a tone with an exiernal speaker

- The unit can be used as a stopwatch, either registering hours. minutes, or seconds, up to $23: 59: 59$, or minutes, seconds, and $1 / 60$ seconds up to 24 minutes, to an accuracy of $1 / 60$ second.

The unit can be used as a timer, to trigger at external device at a preset tume
\square This unit will be available as a complete kit in Jan. 1974 To get one of the first, and take advantage of our lower pre-issue price, send $\$ 10.00$ deposit, will be sent COD for baiance. Toral kit price will be $\$ 69.50$ including pillow speaker as shown. AC power addapter $\$ 4.75$ additional.
\square Available now, all parts. but no circuit board or detailed instructions. $\$ 59.50$ CLOCK CHIPS - INCLUDES NEW DIGITAL
CLOCK/CALENDAR ALARM CHIP
These large scaie integrated (LSI) chips eliminate literatly thousands of components or hundreds of chips in the construction of a clock. For most applications only a single supply and a minimum of components are required $\square 7001$ Chip - Features 28/30/31 day calendar, 12/24 hour clock, 24 hour clock, 24 hout alarm, snooze alarm, 6 digit display, direct dive to luminescent anode tubes or LED segments, single transistor interface with Sperry displays. Segment and digital outputs can be "wire or "D" to share calculator displays. $\$ 14.75$ \square MM5314 Chip - Features 6 digit seven segment output, operates from 50 or 60 Hz input, use for Minitrons LED's, Lursinescent or Sperry displays. 99.75
MM5311 Chip - Same as 5314 but with additional BCD outputs, ceramic pkg. $\$ 12.50$

FUNCTION GENERATOR CHIP. TYPE 4038

 This chip gives simultaneous sine, square, sawtooth. and triangular outputs. Great for music synthesizers, or voltage controlled function generators and oscillators. \square Function Generator ChipLUMINESCENT 7 SEGMENT NUMERIC

READOUTS

Bright Blue-Green display Tube Very pleasing to the eye Tube exhibits fast display speed and easy to read characters of $0.57^{\prime \prime} \mathrm{H} \times 0.36^{\prime \prime} \mathrm{W}$, with decimal point. Complete with instructions to make a decade counting unit or a 6 Digit Clock Tubes are manufactured by Tung-Sol, part number 1705
\square 7SDD-1705 READOUT

one of the world's largest manufacturers

 has sold us his surplus of multiple digit clusters with one bad digit per cluster. They were for use in the calculator DVM, and other products. The remaining digirs are Garanteed Perfect in all respects and are intensity graded marked on the back with letters A thru F l and matchad, art mateh. These monolythic Ga AsP displays require as lit1 as 7 mw per digit are highly readable at arm's length and end themselves well to hand held portable applicatoons. Applications include hand-held calculators, digital thermometers. stopwatches, darkroom timers, DVM's, clocks and ong lifetime indicators.The unit is common cathode, set up for multiplexed operation. Two decimal point styles are available: center decimal trated. The following configurations are available where " 8 " replesents a perfect digit. " X " a non-functioning digit:

| $\times 8888$ | $7405-1$ or $7415-1, \times 888$ | 7414.1 |
| :---: | :---: | :---: | :---: |
| 8×8888 | $7405-2$ or $7415-2,8 \times 88$ | $7414-2$ |
| 88×88 | $7405-3$ or $7415-3,88 \times 8$ | $7414-3$ |
| 888×8 | $7405-4$ or $7415-4,888 \times$ | 7414.4 |
| $8888 \times$ | $7405-5$ or $7415-5, \times 88 \times$ | 75561 |
| All products are available at the following price rate | | |

Evieg
 1-24 digits... S1.875/digit

 25-99 digits... $\$ 1.50 /$ digit Higher quantity price on requestFor the following applications we recommend the foltowing corfigurations:
Pocker calculators: 7405-1 \& 7405-5, which resulis in $\times 88888888 \times$, eight consecutive perfect digits @ $5.375=$ $\$ 15.00$.

Nortec 4204@ \$19.75 \$ $\$ 15.00$ when ordered with displavsl. Caltex 5005 e $\$ 9.75$ ($\$ 7: 50$ when ordered with displays). Clocks: 7405-3 \& 7556-1, which results in $88 \times 88 \times 88 \times$ six perfect digits at $\$ 1.875=\$ 11.25$.

Recommended clock chips
National MM5314 © $\$ 9.75$ ($\$ 7.50$ ordered with displays) National MM5316@\$19.75, includes alarm, $\$ 15.00$ order ed with displaysl.
For only hours and minutes, order 7405 -3 only
Digital ther mometers. DVM's. stopwatches. darkroom timers, frequency counters. etc., order 7415-1 or 7415.5 for fou Use Solitron CM 4102AE 3\% digit counter decader © $\$ 19.00$ (\$15.00 ordered with displays) Schematics for calculators, clock

ALPHANUMERIC DISPLAY
\square This is a 5×7 (35 Do1) Dot Matrix whicn will generate alphanumeric characters when used with an appropriate generator such as the 2513. AtI 64 ASCII or EBDIC cor can be generated.

I.C. SOCKETS

Mfg by T I Cinch, high qualiy, most gold plated. Use for SSI, MSI, and LSI chips. 14 Pin Soider Tail 14 PII Wire Wrap 16 Pin Solder Tail 16 Pin Wire Wrap 24 Pin Wire wrap 24 Pin Solder Tal 28 Pin Solder Tail

COSMOS \& MISC. CHIPS

Harris 256 Bit Programable Read only memory

- 2501256 Bit RAM

4000AE Dual 3 input NOR \& INV
4001 AE Quad 2 Input NOR 4002AE Dual 4 Input NOR 4006AE 18 Stage Shift REG 4007AE Dual Comp Pair 009aE Hex Buffer, 1 m 010AE Hex Buffer, NON-Inv
011AE Quad 2 Input NAND

3 HEIGHT L.E.D. NUMERIC DISPLAYS
Always a good setler, we are now offer ing these displays at the lowest price ever. Use for clocks, counters, and other applications. We have previously sold these for as much as $\$ 6.75$ per digit $\square 0.3$ inch height red LED $\ldots . . \$ 2.25$ 0.3 HEIGHT GREEN L.E.D. NUMERIC DISPLAY
This is the first time we have had green LED's at an economical price. 0.3 inch height green LED . . . $\$ 3.95$ 0.3 HEIGHT YELLOW L.E.D NUMERIC DISPLAY Vary vour display colors for coding or variety.
0.3 tnch height yellow LED $\$ 3.95$ GIANT 0.750 INCH HEIGHT RED L.E.D. NUMERIC DISPLAY

This is one ot the largest LED Displays made. Used in applications where the displays must be read at greater than average distance.s, or for commercial and advertising purposes.
$\square 0.750$ inch $\mathrm{E}=\mathrm{D}$
Numeric Readou

LOWEST PRICE EVER ON
DISCRETE L.F.D. LAMPS
These high quality red LED's are usefu for Logic and Compuror readouts, as Pilot Lights, or at this low price, they can be grouped together to build your own Giant size Alphanumeric Readouts. \square Discrete LED's 10 pcs. $\$ 1.75$ 100 pcs. \$15.00 1000 pcs $\$ 125.00$ 5000 and up $\$ 10$ each
GREEN L.E.D. LAMPS
\square Same as above, but Green.
100 for $\$ 30.00 \quad 10$ for $\$ 4.00$
ELIOW I ED LAMPS
\square Same as above bul Yellow

$$
\begin{array}{r}
2 \text { for } \$ 1.25 \\
10 \text { for } \$ 500
\end{array}
$$

RED WITH BUILT-IN RESISTOR
\square Same. but no resistor required for 5 Voltoperation $\quad 2$ for $\$ 1.00$

CALCULATOR CHIP

Nortec 4204 - Eight Digit, floating point, constant operation single sup ply operation. very low power con sumption. $\$ 1975$ $\$ 15.00$ with purchase of 7400 series LED's.
$\square 5001$ - Twelve Digit, fixed decimal point, no constant, may be used for six digit display. $\$ 9.75$ $\$ 7.50$ with purchase of 7400 serie S LED's.)
$31 / 2$ DIGIT COUNTER CHIP
This chip is useful in building dim's DPM's and smail sounters, provides mul tiplexed seven segment output for LED displays, Solitron 4012 or Equivalent. t $\$ 15.00$ with puichase of 7400 series LED's. 1

 diling I issCATALOG: Check reader's card or write. postage extra on all above items

5ise
 CHARGES WELCOME

BUGGED??? . . Detectors locate hidden transmitters. Literature 25c. SECURITY, Box 671RE, Westwood, N.J. 07675
FREE catalog. IC'S, PUT'S, transducers, ther mocouples, LED'S transistors circuit boards. parts. CHANEY'S, Box 15431, Lakewood, Colo 80215
TEXTRONIX 531A/B-\$425--; 533/CA /\$495 Data Pulse 106A-\$485.-- HP330B-\$275 HP650A- \$195.- DESIGN CONSULTANTS, Box 67. Richardson, Tex. 75080

LASER diodes, $4 \mathrm{~W}: \$ 5.95$; 1 C ' ; readouts catalog. 10c. ELECTRONIC DISCOUNT SALES, 138 N 81st Street, Mesa, Ariz., 85207

HighLY
 profitable
 ONE-MAN
 ELECTRONIC FACTORY

Investment unnecessary, knowledge not required, sales handled by professionals. Idea! home business. Write today for facts! Postcard will do. Barta-BD Box 248 , Walnut Creek, CA 94597.

REBUILD YOUR OWN PICTURE TUBES?
With Lakeside Industries precision equipment, you can rebuild any picture tub
For complete details, send name. address, 2ip code to:
LAKESIDE INDUSTRIES
3520 w . Fullerton Are.
Chicago. Ill. 60647
'hone: 312-342-3399

FREE catalog lists resistors, tubes, transistors, rectifiers, condensers, tools, tuners, etc. etc. HYTRON HUDSON, Dept. RE 2818 Kennedy Blvd., Union City, N.J. 07087

WANTED

QUICK cash ... for electronic equipment components, unused tubes. Send list now! BARRY, 512 Broadway, New York, N.Y. 10012, 212 Walker 5-7000

EDUCATION \& INSTRUCTION

DEGREE Program in Electronics Engineering. Our 27th Year! Free literature. Cook's Institute, Dept. 14, Box 10634 , Jackson. Miss. 39209
SHORTCUTS to success! Highly effective, profitable short courses. (75 choices). Study at home. Diploma awarded. Our 27th year. Free literature. CIEE-E, Box 10634, Jackson, Miss. 39209

PLANS \& KITS

ELECTRONIC organ kits, keyboards and many components. Independent and divider tone generators. All diode keying. IC circuitry. Build any type or size organ desired. Supplement your Artisan Organ. 35c for catalog. DEVTRONIX ORGAN PRODUCTS, Dept. B, 5872 Amapola Dr.. San Jose, Calif. 95129
FREE catalog. Most unusual electronic kits available. Music accessories, surf, wind synthesizers, wind chimes, many others. PAIA Electronics, Box B14359. Oklahoma City, OK 73114

WALL-SIZED TV ... Build a TV projector for under $\$ 15.00$. Free details: MACROCOMA Box-FDE, Washington Crossing. Pa. 18977
DIGITAL/ANALOG plans for home \& lab!!! For Free Catalog write: MP PUBLISHING CO., Box 378, Belmont, Mass. 02178
CONVERT anytelevision to sensitive, big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans \$2.00.SANDERS, Dept. A-25. Box 92102 , Houston. Tex. 77010

3 PRECISION 15 VOLT REGULATORS ON

A PC BOARD

This board contains 3 precision 15 volt regulators. 2 of the regulators are rated at 3.0 amps . 0.1%, and the third is rated at 6.0 amps. 0.1%. At 5.0 and 10.0 amp. the rating is 0.5\%. Each board has 5150 watt NPN power transistors. 4 are used in the regulators, and 1 is a spare. Ideal for ± 15 volt op-amp supplies. Boards are brand new, factory cartons. Cost of components alone over $\$ 48.00$. STOCK NO.F5169 \$11.95 ea. 2/22.00
$6^{\prime \prime} \times 6^{\prime \prime}$ wt. 2 lbs.
POWER TRANSFORMERS
The transformers listed below are suitable for many semiconductor projects, and idealy suited for power supplies to operate the 3 regulator board listed above.

14 V .3 .0 A. \& 550 V. 0.150 A .	F9793	2.75 ea	2/5.00
16 V .4 .0 A .	F9858	3.75 ea	2/7.00
38 V. 1.5 A. ct \& 38 V. 0.5 A.	F9718	3.50 ea	4/12.00
32 V.2.0 A. ct	F9743	4.25 ea	3/12.00
34 V .4 .0 A.ct \& 5.5 V. 1.5 A .	F9448	4.75 ea	2/9.00
Av. wt. of above transformers is 3 for use with F5169 regulator boar	All tran wn abo board.	mers a Deduct	e ideal \% when

ANOTHER HONEYWELL BOARD

Parts bonanza boards. Precision resistors, cap acitors, diodes, pulse transformers, diodes heat sinks, TO-18,TO5 and MADT transistors and more.

$$
\begin{array}{lllll}
\text { STOCK NO.J9121 } & 3 \text { Different boards } & \$ 2.00 & 9 / 5.00 & 20 / 10.00 \\
\hline
\end{array}
$$

MINIMUM ORDER $\$ 5.00$. Include postage, excess refunded. New

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume responsibility for any errors which may appear in the index below.

READER SERVICE CARD NO

24 Alatm Devices Mlig. Co Alisin futomotive

Bell \& Howell Schools
13\& h Division of Dynascan Corp Brooks Radio \& IV Corp.
74 Castle TV Tuner Service, Inc..........Cover Is
61 Center for Tectnical Developmen Chemrronics, Inc.
CIF. Cleveland Institure of Elecrionics38-41 CREI, Division of the MCGraw-Hill Continuing Fducation Center Crown International
8 Delia Products. Inc.
28 Eullie Electronics
73 Edmund Scemific Co.
64 EICO Flectroric Instrument Corp EviC. Electronic Veasurements Corn Enterprise Develorment Corn F. S. Fnterprisen

64 Fordham Radio Surply Co.
63. Granthat School of Electronics G1E Sylvania Electronic Components
19 Harwil Co
(6) Heath Co

69 Indiana Home Sudy Institure International Crystal VIfg. Co.

70 Jensen Tool \& Alloy
1.4 Lealer

Wallory Distributor Products Co
75 Verrimack Instruments Inc.
Systems. Inc.
Vountain West Alarm Supply Co.
30 Natronal Camera Co
Valionat Technical Schools
NRITraining
34 PAIA Electronics
20 PLC Electronics
Proictor Recorder Bell C_{1}
I'TS Electronics. Inc.
Rustio Shack
$\begin{array}{ll}26 & \text { R.A.G.S } \\ 62 \\ \text { Rye Industrios }\end{array}$
4 Sams \& Co.. Howand W
Schober Otgan
${ }_{9}$ Shate Bror
Southued Technical Product
Sprague Products Corp.
Sylvania Lechnical School
Home Study Division
Technics by Pamasonic
Telematic.
Tiads-Utrad Distributor
Tit-Stiar Corp.
Tu-Star Corp.
72 U.S Coast Guard
6s Vero Electronic
Vintuge Radios.
27 Wahl Clipper Corp.

Marker centek
79 Bahylon Electronics
4 Barta
 ommercial establishments, and those people who like arge displays, characters appear as a bright continuous line which can be read from distances as great as 150 teet All drive circuits are solid state, and unit employs new custom LSI clock chip. Indicates hour, minutes, and sec onds. May be wired for 24 hour or 12 hour operation with a simple jumper change. Kit offered complete with or without case for custom installations. Parts include P.C. board, sockets, solid state components, hardware, resistors, caps, viewing filter, etc
Giant Nixie Clock Kit
$\$ 99.50$
24 VOLT 5 AMP TRANSFORMER
We have ust received a truckioad of these high qualliy computor specification transformers. The floors are groanng and we are selling them al a LOW-LOW price just to clear them out Excerlent tor Power Supplies. Audio Amps
24 Volt 5 Anp Xiormer
$\$ 3.95$

Abstract

- 5 for $\$ 15.00$, write for prices of Mfg quantites

LIGHTED PUSH BUTTON S WITCHES WITH INSERT

hese large lighied push button swithes measure $1.7^{\prime \prime} \times$ tic cap so that legend can be inserted inside Includes two 12 volt bipin bulbs Contacts are DPST if cap is inserted upside down. switch section becomes inoperative an excellent safeguard tor burglar alarms, etc for people who don't know the 'trick
\square Lighted push button switch
\$100 each W Write tor production prices 10 for $\$ 7.50$
HEAVY DUTY DATA TERMINAL POWEA SUPPLY
 Originally manulactured tor use in Data Termnats these are rugged conservatively rated power suppies tor continuous duty operation The original cost of these supplies was $\$ 27800$ All outputs are regulated to $=5 \%$ by a constant votage trais former. and in addition two of the outputs are regulated to 02% by solid state regulators Circuits are prowected by luses and circuit breakers Two types are avairable

- Type A $\quad 24 \mathrm{VDC}$ ín $16 A=02 \%, 265 \mathrm{~V}$ 保 $325 A=2 \%$ $18 \vee D C$ if $66 \mathrm{~A}=5 \% \quad 14 \mathrm{~V}$ (t) $2.9 \mathrm{~A} 0.2 \%, 12 \mathrm{VDC}($ í $1 \mathrm{~A}=5 \%$
Price $\quad \$ 2950$
-Type "B" Same as above except inchudes 5VDC in 325 Amps. instead of 14 V " 29 AMPS
$\$ 3450$
Shipping Weight- 30 ios either supply
MANUFACTURERS OVERSTOCK CLOSEOUT
AUTO STEREO AMFM TAPE PLAYER
This high quality tape player with AMFM radio is made to fit right into the dasnboard of your car Looks like it's onty a radio. so it's less likety to get foped off why not listen to music whibe youre wail. ing in line lor gas Prevents trayed tempers and fistights "Music hath charms to soothe the savage beast" Fully guaranked by both manulachier and B \& F tor 1 year, parts and lator Super easy installation Power 4 watts RMS per channel (10 watts peak) Your complete satistaction is guaranteed
- Tape AM/FM Car Stereo
$\$ 9975$
- Patr of 61/2 12 oz Magnet Speakers

POWER SUPPLYKIT

This kit includes 24 Voll 5 AMP neavy duty transtormer. brige rectifier. 8.000 MFD capacitor. 723 regulator par of 2N3055 transistors. DC rolmeter. plus all electrical curcuit breaker parts to build a complete regulated laboratory supply
"Lab Supply Kit
Shipong Werght 20 Lbs

ATOR KIT
and F was one of the first (if not the first) to introduce an un der $\$ 100.00$ calculator. Now that all the giant corporations have in roduced theirs, we feet it's time to move on to new kits and let the "Biggies" stug it out We have enough parts for about 200 more calculators. which we are closing out at $\$ 54.50$ each. Floating point eight digit display, constant capability, sealed elastomer keyboard, molded ABS case, uses (4) standard AA cells. 14 hour battery life
$[$ Pocker Calculator K is
$\$ 54.50$

STEREO TAPE CARTRIDGE PLAVER

1 MHz FAEQUENCY STANDARD CAYSTAL

This is a $1,000,000 \mathrm{MHz}$ Crystal $+5 \mathrm{~Hz},-\mathrm{OHz}$ Can be putled to exactly $1 \mathrm{MHz} \pm 0 \mathrm{~Hz}$ with 5 -30 PF trimmer Excellent temperature coeffic rent OD 4007 makes excellent Oscilitator, Duffer Circuit included. Super. LOW price while 2.000 PCs ast
-1 MHz Crystal Standara
$\$ 4.50$

QUARTZ CRYSTAL CHRONOMETER

Revolutionary!, was the reaction of our customers when they saw thiskit. Measurting onlv $21 / /^{\prime \prime} \times 2 \frac{1}{2}{ }^{\prime \prime} \times 23 / 8^{\prime \prime}$, and accurate to 10 seconds a month, this chronometer promises to entirety replace mechanical clocks in cars, boats, and airplanes.
Fits into a standard 2% " instrument panel cutout. The displays are bright L.E.D. displays that should last a lifetime. Setting controls are recessed and operate from a pointed ob ject such as a pencil point or paper clip, in order to keep non-authorized hands off. The clock should only have to be reset at very great intervals. or in the event of power loss (i.e. replacing battery in carl. This clock is wired so that the timing circuits are always running, but the displays are only lit when the ignition is on, resulting in negligible nower drain. The low price is only possible because of a new one chip MOS clock. Operates from $12-24$ Volts DC. An accessory unit which mounts on the back adapts the unit to $\mathbf{2 - 2 8}$ volts for twin engine aircratt and larger boats using 24 Votts ignition. Know how disgusted you are with the usual car clock? Order this fine unit now for rallying, sports events, navigation, or just to have a fine chronometer that will give vou a lifetime of superbiv accurate time.
\square Quartz Chronometer, Kit Form $\$ 69.50$ [] Quartz Chronometer. Wired $\$ 99.50$ $\square 24$ Volt Adapter.......... $\$ 10.00$ NICAD BATTERIES

No need to tell you the uses of these seated Nick le-Cadmium hat teries in all kinds of portable equipment. All brand new except the 0.5 ampere hour. which is removed from new equipment. guaranteed perfect

Type

$$
\begin{aligned}
& \text { guaranteed perfect } \\
& \text { hos Price Size }
\end{aligned}
$$

	Type	Volts	Amos	Price	Size
\square	1.25 NCB0.5	1.25	0.5	50	11/4"diam $\times 5 / 8^{\prime \prime}$
\square	1.25 NCB0.6	1.25	0.6	1.00	Lg. AA
\square	24 NCB 0.6	24	0.6	11.80	$11 / 2^{\prime *} \times 11 / 2^{\prime \prime} \times 11^{\prime \prime}$
\square	8ncbo.6	8	0.6	5.00	5/8"diam $\times 11^{\prime \prime}$
\square	18NCB	18	0.5	7.50	$3^{\prime \prime} \times 3^{\prime \prime} \times 4^{\prime \prime}$

LOUDSPEAKER SYSTEM COMPONENTS

We have made an excellen purchase of an excess inven-
tory of a local manufacturer.s tor v of a local manufacturer's speaker systems, although we the mfg.s named to mention should make, the specs The wooter it self-evident The wooter is a 12 " free-edge lacoustic suspensionl unit, with 2 " voice coil and a No 2 magnet. The mid-range is a $5^{\prime \prime}$ sealed back speaker and $31_{2}^{\prime \prime}$ flare dome tweeter for best high frequency dispersion Crossover between woofer \& mid-range is by an R-L-C net work, while high frequency crossover is by an R-C network Balance controls are provided for hoth mid-range and tweeter Plans tor a suitable enclosure are provided. The level controls provide frequency response to suit room acoustics, with ealism that will delight even the most critical listener. Re sponse -25 to $250 \mathrm{~K}+\mathrm{Hz}$., Power -40 watis RMS. Impe dance -8 ohms. Sh. Wt. 12 lbs .
\square LSCS
$\$ 36.00$

- 2LSCS

RESOLUTION TEST CHART These $2^{\prime \prime} \times 2^{*}$ glass plate test charks are excellent for testing enlargers, microscopes. scanners, etc. Original cost to manufacture was over $\$ 6000$ Complete plate is covered with test patterns. Sevefal types available may vary slightly from eral tvpes available may vary slightly from illustration. A rare bargain
\square Resolution Tes: Plate
$\$ 2.50$
HERMETICALLY SEALED FIBEAGLASS CARAYING CASES

$13^{\prime \prime} \times 30^{\prime \prime} \times 30^{\prime \prime}$ brand new luggage type carrying cases were orginally manutac tured to ship deticate elec tronic equipment overseas Excellent for storing. ship ping and carrying photo graphic equipment instru ments. etc Includes easily removable foam rubber inserts Original cost to manufacfure was $\$ 16000$ would probably be even higher today Decause of plastics shortage.
\square Fiberglass carrying case
$\$ 25.00$
RESETTABLE FOUR DIGIT COUNTERS

These counters have raised numerals for print out thr carbon ribbon, but can be used as conventional counters also, reset by wheel on side. Coil is 12 volts D.C may de operated on 115 VAC by diade-capacitor-resistor.
\square Resettable Four Digit Counter \square Diode-Resistor-Cap for 115 VAC

TELEPHONE TOUCH-TONE

KEYBOARD

Built by General Telephone, this kev. board uses 2 poles and seven busses for ouch-tone keving. Never before at this low price. Size $3^{\prime \prime} \times 2^{1 / /^{\prime \prime} \times 1 \text { 1 }}$ \square Telephone KB
$\$ 4.75$ AM/FM RAOIO CHASSIS Quality A.C. powered AM/FM radto. Useful for construction projects. Order now, these usu-
ally don't last long.

1 AM/FM Radio
$\$ 5.75$

Send in an order and get on our sp=wial custome

 Aldiling 1 ist.```
 CATALOG: Check reader's card or write.
```

        postage extra on all above items
    
## CHARGES WELCOME!

## LIVE IN THE WORLD OF TOMORROW...TODAY!



3-CHANNEL COLOR ORGAN KIT
Easy to build low-cost kit needs no technical knowledge. Completed unit has 3 bands of audio frequencies to modulate 3 independent strings of colored lamps (i.e. "'lows'"-reds, "middles"' greens, '"highs''blues. Just connect hi-fi radio, power lamp etc. \& plug ea. lamp string into own channel (max. 300 w ea.). Kit features 3 neon indicators, color intensity controls, con trolled individ SCR circuits; isolation
former; custom plastic housing; instr.

(And our FREE CATALOG is packed with exciting and unusual ecological \& physical science items-plus 4,500 finds for fun, study or profit . . . for every mem ber of the family.) OmRad beam Diverg.
Stock No, 79,050EH

## $\$ 325.00$ Ppd.



SUPER 6
SPACE CONQUEROR

## 130 EXPERIMENTS IN OPTICS


and photography! Optixa Experiments Kit is a complete optical \& photography lab for 130 exciting experiments. Lets microscope, kaleidoscope!...Build a 35 mm reflex camera with interchange. able lens system! Make, develop photographic film! Enjoy the fun and fas. cination of having your own optics lab. Fully illustrated 112-pg. manual. $81 / 2^{\prime \prime} \times 11^{\prime \prime}$, clearly explains usage of this stimulating kit's 114 precision engineered components.
Stock No. 71,646EH .... \$22.50 Ppd.

















 ELECTRONIC
SOUND COLLECTOR
The Big Ear(R) is a science toy that's
fun for all, o tune in a whisper at 20 ft.,
normal conversations up to 100 ft., bird
calls \& high freq. sounds at almost 200 ft.
Nearly twice as far over water! Experiment
and hobby-ize with it indoors or out f from
baby sitting to bird watching. Big 18" plastic
reflector disc pulls sound waves into trans-
istor unit, then amplifies them. Mike sys-
tem, stei'nscope earphones, tripod ( $331 / 2^{\prime \prime}$
extended). Sets up in secs. ELECTRONIC
SOUND COLLECTOR
The Big Ear(R) is a science toy that's
fun for all, o tune in a whisper at 20 ft.,
normal conversations up to 100 ft., bird
calls \& high freq. sounds at almost 200 ft.
Nearly twice as far over water! Experiment
and hobby-ize with it indoors or out f from
baby sitting to bird watching. Big 18" plastic
reflector disc pulls sound waves into trans-
istor unit, then amplifies them. Mike sys-
tem, stei'nscope earphones, tripod ( $331 / 2^{\prime \prime}$
extended). Sets up in secs. ELECTRONIC
SOUND COLLECTOR
The Big Ear(R) is a science toy that's
fun for all, o tune in a whisper at 20 ft.,
normal conversations up to 100 ft., bird
calls \& high freq. sounds at almost 200 ft.
Nearly twice as far over water! Experiment
and hobby-ize with it indoors or out f from
baby sitting to bird watching. Big 18" plastic
reflector disc pulls sound waves into trans-
istor unit, then amplifies them. Mike sys-
tem, stei'nscope earphones, tripod ( $331 / 2^{\prime \prime}$
extended). Sets up in secs. ELECTRONIC
SOUND COLLECTOR
The Big Ear(R) is a science toy that's
fun for all, o tune in a whisper at 20 ft.,
normal conversations up to 100 ft., bird
calls \& high freq. sounds at almost 200 ft.
Nearly twice as far over water! Experiment
and hobby-ize with it indoors or out f from
baby sitting to bird watching. Big 18" plastic
reflector disc pulls sound waves into trans-
istor unit, then amplifies them. Mike sys-
tem, stei'nscope earphones, tripod ( $331 / 2^{\prime \prime}$
extended). Sets up in secs. ELECTRONIC
SOUND COLLECTOR
The Big Ear(R) is a science toy that's
fun for all, o tune in a whisper at 20 ft.,
normal conversations up to 100 ft., bird
calls \& high freq. sounds at almost 200 ft.
Nearly twice as far over water! Experiment
and hobby-ize with it indoors or out f from
baby sitting to bird watching. Big 18" plastic
reflector disc pulls sound waves into trans-
istor unit, then amplifies them. Mike sys-
tem, stei'nscope earphones, tripod ( $331 / 2^{\prime \prime}$
extended). Sets up in secs. ELECTRONIC
SOUND COLLECTOR
The Big Ear(R) is a science toy that's
fun for all, o tune in a whisper at 20 ft.,
normal conversations up to 100 ft., bird
calls \& high freq. sounds at almost 200 ft.
Nearly twice as far over water! Experiment
and hobby-ize with it indoors or out f from
baby sitting to bird watching. Big 18" plastic
reflector disc pulls sound waves into trans-
istor unit, then amplifies them. Mike sys-
tem, stei'nscope earphones, tripod ( $331 / 2^{\prime \prime}$
extended). Sets up in secs. ELECTRONIC
SOUND COLLECTOR
The Big Ear(R) is a science toy that's
fun for all, o tune in a whisper at 20 ft.,
normal conversations up to 100 ft., bird
calls \& high freq. sounds at almost 200 ft.
Nearly twice as far over water! Experiment
and hobby-ize with it indoors or out f from
baby sitting to bird watching. Big 18" plastic
reflector disc pulls sound waves into trans-
istor unit, then amplifies them. Mike sys-
tem, stei'nscope earphones, tripod ( $331 / 2^{\prime \prime}$
extended). Sets up in secs. ELECTRONIC
SOUND COLLECTOR
The Big Ear(R) is a science toy that's
fun for all, to tune in a whisper at 20 ft.,
normal conversations up to 100 ft., bird
calls \& high freq. sounds at almost 200 ft.
Nearly twice as far over water! Experiment
and hobby-ize with it indoors or out from
baby sitting to bird watching. Big 18 " plastic
reflector disc pulls sound waves into trans-
istor unit, then amplifies them. Mike sys-
tem, stei'nscope earphones, tripod (331/2"
extended). Sets up in secs.
Stock No. 80,176EH........ \$26.50 Ppd. ELECTRONIC
SOUND COLLECTOR
The Big Ear(R) is a science toy that's
fun for all, o tune in a whisper at 20 ft.,
normal conversations up to 100 ft., bird
calls \& high freq. sounds at almost 200 ft.
Nearly twice as far over water! Experiment
and hobby-ize with it indoors or out f from
baby sitting to bird watching. Big 18" plastic
reflector disc pulls sound waves into trans-
istor unit, then amplifies them. Mike sys-
tem, stei'nscope earphones, tripod ( $331 / 2^{\prime \prime}$
extended). Sets up in secs.
 ELECTRONIC
SOUND COLLECTOR
The Big Ear(R) is a science toy that's
fun for all, o tune in a whisper at 20 ft.,
normal conversations up to 100 ft., bird
calls \& high freq. sounds at almost 200 ft.
Nearly twice as far over water! Experiment
and hobby-ize with it indoors or out f from
baby sitting to bird watching. Big 18" plastic
reflector disc pulls sound waves into trans-
istor unit, then amplifies them. Mike sys-
tem, stei'nscope earphones, tripod ( $331 / 2^{\prime \prime}$
extended). Sets up in secs.

# Our most expensive turntable has direct drive. So does ourleast expensive. 

When Technics introduced direct drive, we set new standards for turntable performance. That's why we use direct drive exclusively in all Technics turntables.
No other system measures up to direct drive. Wow and flutter are less than $0.03 \%$ WRMS And rumble is down to -65 dB (DIN A) and -70 dB (DiN B).


Our DC motor has no noise- or staticproducing brushes and virtually none of the hum normally found in $A C$ motors.
It reaches playing speed in half a revolution and has electronic speed control that prevents speed changes due to line fluctuations.
All Technics turntables have illuminated stroboscopes, cast aluminum platters and variable pitch controls. The SL-1200 also has a precision tone arm, viscous damped cueing and low-capacitance 4 -channel phono cables.

So does the SL-1100A but with a heavier platter, bigger motor and longer tone arm.

FREQUENCY SPECTRUM OF RUMBLE


And the SP-10 is for those who insist on choosing their own tone arm.
No matter which Technics turntable you choose, you get the finest drive system that money can buy. But don't take our word for it. Read the reviews.* And you'll agree.

The concept is simple. The execution is precise. The performance is outstanding. The name is Technics.
*SP-10: Audio, 8/71; Stereo Review, 9/71. SL-1100A: Stereo Review, 7/73; High Fidelity, 9/73

200 PARK AVE., N.Y., N.Y. 10017 . FOR YOUR NEAREST AUTHORIZED TECHNICS DEALER, CALL TOLL FREE 800 447-4700. IN ILLINOIS, 800 322-4400.

## Technics

## NEW



Latest, all solid state version of the sensational signal circuit analyzing timesaver originated by Castle.
Invaluable for locating the break in the tuner and i.f. signal chain or analyzing age system defects in tube TV receivers . . . essential for speedy location of signal circuit defects in modular IC, solid state and hybrid TV receivers.

A NEW APPROACH to age system analyzing!
Permits signal injection after the agc controlled stages to simplify testing for agc defects.

- Warks with any 40 MHz receiver
color or black and white
solid state, tube or hybrid
- High level, low impedonce output furnishes signal usable at input of final i.f. stage
- Special output circuit works equally well into first i.f. in put of late model, link coupled systems and older, low "C" bandpass coupled systems.
- Antenno input and i.f. output electrically isolated; no "hot" chassis hazards.
- Na need to discannect supply leads fram suspected tuner being tested. Substitutes the VHF tuner and tests the UHF tuner.
- Tunes all 12 VHF channels, has preset (memory) fine funing on all chonnels.
- Higher overall goin than previous models with wide range gain reduction contral of 60 db
- Completely self contained and battery operated, uses popular batteries available everywhere. Simple battery replacement; battery compartment in rear of custom malded case.
- Reduced current consumption extends battery life to as much as double that of previous models. Bright LED indicator warns when unit is ON.
- Use on the bench or in the home ... anywhere
- Comes complete with extension cables, batteries and instructions.


Contact your distributor.


[^0]:    As a service to readers, Radio-Electronics publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers. Radlo-Electronics disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

[^1]:    *CIE backs its courses with this famous Money-Back Warranty: when you complete a CIE license preparation course, you'll be able to pass your FCC during completion time allowed for your course.

[^2]:    Magnetic earphone, hookup wire, solder. flashlight (Mallory or Radio Shack), PR-4 lamp (supplied with flashlight), etc

[^3]:    In light of our present knowledge of propagation phenomena, the tests took place at the worst possible time, because both the transmission site and the receiving site were in daylight. There is little possibility that the frequency of 820 kHz could propagate over 2000 miles during daylight because absorption by the ionosphere during those hours is at a maximum, and even powers of the order of thousands of kilowatts would not deliver a significant signal over the Atlantic in that frequency range.
    G.R.M. Garratt has theorized that reception of the signals did not take place at the frequencies for which the equipment was designed, but at much higher frequencies: the Poldhu transmitter probably radiated considerable higher order harmonics which would be capable of being propagated over a daylight path, since absorption by the ionosphere decreases as the transmission frequency is increased. In view of the fact that radio amateurs of today are frequently capable of signalling across the Atlantic using powers of the order of watts, it is quite likely that Marconi actually heard the historic series of dots on that bleak and dreary day, but on a frequency in the 10.000 to $15,000-\mathrm{kHz}$ range, in the short-wave portion of the electromagnetic spectrum.

    Most of the doubts were dispelled less than three months later, when Marconi sailed across the Atlantic from Southampton to New York aboard the liner Philadelphia. The ship was equipped with Marconi's latest syntonic receiving equipment and an antenna lashed to a specially constructed 150 -foot mast aboard the ship. A Morse inker recorded signals as they were received, and the captain of the ship verified all observations.

    As the ship sailed on, signals continued loud and clear. At a distance of 700 miles, they were being recorded in broad daylight. Beyond that, the Poldhu transmitter could only be heard at night. This was the first observation of the curious nighttime effect which radio amateurs were to observe countless times-that signals traveled much greater distances at night than during the day.

    During most of Marconi's historic voyage, signals were being received before witnesses. Poldhu's S's were recorded to a distance of 2099 miles, almost precisely the distance between Poldhu and St. John's. There could no longer be any doubt. The miracle of long distance communication without wires had come to pass. Much of the miracle lay in the fact that this was only the beginning! R-E

